15,084 research outputs found

    On separable Fokker-Planck equations with a constant diagonal diffusion matrix

    Full text link
    We classify (1+3)-dimensional Fokker-Planck equations with a constant diagonal diffusion matrix that are solvable by the method of separation of variables. As a result, we get possible forms of the drift coefficients B1(x⃗),B2(x⃗),B3(x⃗)B_1(\vec x),B_2(\vec x),B_3(\vec x) providing separability of the corresponding Fokker-Planck equations and carry out variable separation in the latter. It is established, in particular, that the necessary condition for the Fokker-Planck equation to be separable is that the drift coefficients B⃗(x⃗)\vec B(\vec x) must be linear. We also find the necessary condition for R-separability of the Fokker-Planck equation. Furthermore, exact solutions of the Fokker-Planck equation with separated variables are constructedComment: 20 pages, LaTe

    Maximal Abelian Subgroups of the Isometry and Conformal Groups of Euclidean and Minkowski Spaces

    Get PDF
    The maximal Abelian subalgebras of the Euclidean e(p,0) and pseudoeuclidean e(p,1)Lie algebras are classified into conjugacy classes under the action of the corresponding Lie groups E(p,0) and E(p,1), and also under the conformal groups O(p+1,1) and O(p+1,2), respectively. The results are presented in terms of decomposition theorems. For e(p,0) orthogonally indecomposable MASAs exist only for p=1 and p=2. For e(p,1), on the other hand, orthogonally indecomposable MASAs exist for all values of p. The results are used to construct new coordinate systems in which wave equations and Hamilton-Jacobi equations allow the separation of variables.Comment: 31 pages, Latex (+ latexsym

    Quantum Pair Creation of Soliton Domain Walls

    Full text link
    A large body of experimental evidence suggests that the decay of the false vacuum, accompanied by quantum pair creation of soliton domain walls, can occur in a variety of condensed matter systems. Examples include nucleation of charge soliton pairs in density waves [eg. J. H. Miller, Jr. et al., Phys. Rev. Lett. 84, 1555 (2000)] and flux soliton pairs in long Josephon junctions. Recently, Dias and Lemos [J. Math. Phys. 42, 3292 (2001)] have argued that the mass mm of the soliton should be interpreted as a line density and a surface density, respectively, for (2+1)-D and (3+1)-D systems in the expression for the pair production rate. As the transverse dimensions are increased and the total mass (energy) becomes large, thermal activation becomes suppressed, so quantum processes can dominate even at relatively high temperatures. This paper will discuss both experimental evidence and theoretical arguments for the existence of high-temperature collective quantum phenomena

    Quasi-equilibria in one-dimensional self-gravitating many body systems

    Full text link
    The microscopic dynamics of one-dimensional self-gravitating many-body systems is studied. We examine two courses of the evolution which has the isothermal and stationary water-bag distribution as initial conditions. We investigate the evolution of the systems toward thermal equilibrium. It is found that when the number of degrees of freedom of the system is increased, the water-bag distribution becomes a quasi-equilibrium, and also the stochasticity of the system reduces. This results suggest that the phase space of the system is effectively not ergodic and the system with large degreees of freedom approaches to the near-integrable one.Comment: 21pages + 7 figures (available upon request), revtex, submitted to Physical Review

    A quark model analysis of the charge symmetry breaking in nuclear force

    Full text link
    In order to investigate the charge symmetry breaking (CSB) in the short range part of the nuclear force, we calculate the difference of the masses of the neutron and the proton, ΔM\Delta {\rm M}, the difference of the scattering lengths of the p-p and n-n scatterings, Δa\Delta a, and the difference of the analyzing power of the proton and the neutron in the n-p scattering, ΔA(ξ)\Delta A(\theta), by a quark model. In the present model the sources of CSB are the mass difference of the up and down quarks and the electromagnetic interaction. We investigate how much each of them contributes to ΔM\Delta {\rm M}, Δa\Delta a and ΔA(ξ)\Delta A(\theta). It is found that the contribution of CSB of the short range part in the nuclear force is large enough to explain the observed ΔA(ξ)\Delta A(\theta), while Δa\Delta a is rather underestimated.Comment: 26 pages,6 figure

    Taxus and taxol: a compilation of research findings

    Get PDF
    History of the development of taxol as a cancer-fighting drug -- Traditional uses of yews -- A history of yews in the United States / Kenneth D. Cochran -- Taxus populations and clippings yields at commercial nurseries / Robert C. Hansen, Kenneth D. Cochran, Harold M. Keener and Edward M. Croom Jr. -- Genetic resources for ornamental Taxus in the United States / Kenneth D. Cochran -- Root rot of Taxus spp. in Ohio caused by Phytophthora cinnamomi / Michael A. Ellis, Sally A. Miller, A. F. Schmitthenner and Kenneth D. Cochran -- Growth rate of container-grown Taxus x media 'Hicksii' and 'Densiformis' compared at two levels of nutrition and irrigation / Robert C. Hansen, Kenneth D. Cochran and R. Peter Fynn -- Taxus clipping harvester / Robert G. Holmes and Don Wertz -- Thin-layer drying of cultivated Taxus clippings / Robert C. Hansen, Harold M. Keener and Hala N. ElSohly -- Evaluation of bin drying of Taxus biomass / Robert C. Hansen, Ralph B. Shugert Jr., Hala N. ElSohly, Edward M. Croom Jr., Harld M. Keener -- Selecting bed depth for drying cultivated Taxus clippings / Robert C. Hansen and Harold M. Keener -- Progress report and summary: National Cancer Institute Workshop on Taxus, Taxol, and Taxotere / Robert C. Hansen, Robert G. Holmes, Ralph B. Shugert Jr., Edward M. Croom Jr., Hala N. ElSohly, Harold M. Keener and Kenneth D. Cochra

    Seeing Tree Structure from Vibration

    Full text link
    Humans recognize object structure from both their appearance and motion; often, motion helps to resolve ambiguities in object structure that arise when we observe object appearance only. There are particular scenarios, however, where neither appearance nor spatial-temporal motion signals are informative: occluding twigs may look connected and have almost identical movements, though they belong to different, possibly disconnected branches. We propose to tackle this problem through spectrum analysis of motion signals, because vibrations of disconnected branches, though visually similar, often have distinctive natural frequencies. We propose a novel formulation of tree structure based on a physics-based link model, and validate its effectiveness by theoretical analysis, numerical simulation, and empirical experiments. With this formulation, we use nonparametric Bayesian inference to reconstruct tree structure from both spectral vibration signals and appearance cues. Our model performs well in recognizing hierarchical tree structure from real-world videos of trees and vessels.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://tree.csail.mit.edu

    A bifunctional exoglucanase-endoglucanase fusion protein

    Get PDF
    A fusion was constructed between the cex gene of Cellulomonas fimi, which encodes an exoglucanase, and the cenA gene of the same organism, which encodes an endoglucanase. The cex-cenA fusion was expressed in Escherichia coli to give a fusion protein with both exoglucanase and endoglucanase activities. The fusion protein, unlike the cex and the cenA gene products from E. coli, did not bind to microcrystalline cellulose, presumably because it lacked an intact substrate-binding region. The fusion protein was exported to the periplasm in E. coli

    SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods

    Get PDF
    In the last few years thousands of scientific papers have investigated sentiment analysis, several startups that measure opinions on real data have emerged and a number of innovative products related to this theme have been developed. There are multiple methods for measuring sentiments, including lexical-based and supervised machine learning methods. Despite the vast interest on the theme and wide popularity of some methods, it is unclear which one is better for identifying the polarity (i.e., positive or negative) of a message. Accordingly, there is a strong need to conduct a thorough apple-to-apple comparison of sentiment analysis methods, \textit{as they are used in practice}, across multiple datasets originated from different data sources. Such a comparison is key for understanding the potential limitations, advantages, and disadvantages of popular methods. This article aims at filling this gap by presenting a benchmark comparison of twenty-four popular sentiment analysis methods (which we call the state-of-the-practice methods). Our evaluation is based on a benchmark of eighteen labeled datasets, covering messages posted on social networks, movie and product reviews, as well as opinions and comments in news articles. Our results highlight the extent to which the prediction performance of these methods varies considerably across datasets. Aiming at boosting the development of this research area, we open the methods' codes and datasets used in this article, deploying them in a benchmark system, which provides an open API for accessing and comparing sentence-level sentiment analysis methods
    • 

    corecore