1,135 research outputs found

    Geomagnetic induction and conductive structures in north-west India

    Get PDF
    Magnetic disturbance events and quiet daily variation as recorded by the 1979 magnetometer array study in north-west India are analysed for evidence of electrical conductivity structures in the region. Contour maps of Fourier transform parameters are presented, and the disturbance event data are also reduced to sets of real and quadrature Parkinson arrows over a range of periods. A variety of conductive structures in the area are mapped, including some relatively shallow ones thought to be caused by sediments, as in the Ganga basin. More information is obtained on a major conductivity structure which strikes perpendicular to the Ganga basin into the foothills of the Himalayas; a second major conductivity structure is detected to lie to the west of the array area, and may be associated there with some aspect of the suture zone of India and Asia

    Morphologic and molecular characterization of new Cyclospora species from Ethiopian monkeys: C. cercopitheci sp.n., C. colobi sp.n., and C. papionis sp.n.

    Get PDF
    In recent years, human cyclosporiasis has emerged as an important infection, with large outbreaks in the United States and Canada. Understanding the biology and epidemiology of Cyclospora has been difficult and slow and has been complicated by not knowing the pathogen s origins, animal reservoirs (if any), and relationship to other coccidian parasites. This report provides morphologic and molecular characterization of three parasites isolated from primates and names each isolate: Cyclospora cercopitheci sp.n. for a species recovered from green monkeys, C. colobi sp.n. for a parasite from colobus monkeys, and C. papionis sp.n. for a species infecting baboons. These species, plus C. cayetanensis, which infects humans, increase to four the recognized species of Cyclospora infecting primates. These four species group homogeneously as a single branch intermediate between avian and mammalian Eimeria. Results of our analysis contribute toward clarification of the taxonomic position of Cyclospora and its relationship to other coccidian parasites

    On the interpretation of the distinctive pattern of geomagnetic induction observed in northwest India

    Get PDF
    The geomagnetic variation data from the 1979 Indian array experiment have been reanalyzed and reexamined using the hypothetical event analysis technique. The contour map of the |Z/H ratio replicates distinctive anomaly in northwest India previously delineated in maps of the Fourier coefficients. The anomaly reveals the presence of a significant conductor under the Ganga basin. The contour map has been used to derive a response profile perpendicular to the strike of the anomaly, for comparison with 2-D numerical models. An excellent fit was found for a conductor at a depth of 32 km, with a width of 110 km and a conductivity contrast of 1000. This result places the conductor deep within the lithosphere. In the absence of supporting data the origin of the conductor is difficult to resolve. However, it is thought to be related to pressure-released partial melting, caused by fracturing of the Indian crust during the collision of India with Asia

    Segregated neural explants exhibit co-oriented, asymmetric, neurite outgrowth

    Get PDF
    Explants of embryonic chick sympathetic and sensory ganglia were found to exhibit asymmetric radial outgrowth of neurites under standard culture conditions with or without exogenous Nerve Growth Factor [NGF]. Opposing sides of an explant exhibited: a) differences in neurite length and, b) differences in neurite morphology. Strikingly, this asymmetry exhibited co-orientation among segregated, neighboring explants. The underlying mechanism(s) of the asymmetry and its co-orientation are not known but appear to depend on cell clustering because dissociated sympathetic neurons do not exhibit co-orientation whereas re-aggregated clusters of cells do. This emergent behavior may be similar to the community effect described in other cell types. If a similar phenomenon exists in the embryo, or in maturity, it may contribute to the establishment of proper orientation of neurite outgrowth during development and/or injury-induced neuronal plasticity

    Quark Masses: An Environmental Impact Statement

    Full text link
    We investigate worlds that lie on a slice through the parameter space of the Standard Model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as "congenial" worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charges one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses and nuclear masses as functions of baryon masses. We check for the stability of nuclei against fission, strong particle emission, and weak nucleon emission. For two light quarks with charges 2/3 and -1/3, we find a band of congeniality roughly 29 MeV wide in their mass difference. We also find another, less robust region of congeniality with one light, charge -1/3 quark, and two heavier, approximately degenerate charge -1/3 and 2/3 quarks. No other assignment of light quark charges yields congenial worlds with two baryons participating in nuclei. We identify and discuss the region in quark-mass space where nuclei would be made from three or more baryon species.Comment: 40 pages, 16 figures (in color), 4 tables. See paper for a more detailed abstract. v4: Cleaning up minor typo

    Non-Equilibrium Reaction Rates in the Macroscopic Chemistry Method for DSMC Calculations

    Get PDF
    The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method

    A complex ray-tracing tool for high-frequency mean-field flow interaction effects in jets

    No full text
    This paper presents a complex ray-tracing tool for the calculation of high-frequency Green’s functions in 3D mean field jet flows. For a generic problem, the ray solution suffers from three main deficiencies: multiplicity of solutions, singularities at caustics, and the determining of complex solutions. The purpose of this paper is to generalize, combine and apply existing stationary media methods to moving media scenarios. Multiplicities are dealt with using an equivalent two-point boundary-value problem, whilst non-uniformities at caustics are corrected using diffraction catastrophes. Complex rays are found using a combination of imaginary perturbations, an assumption of caustic stability, and analytic continuation of the receiver curve. To demonstrate this method, the ray tool is compared against a high-frequency modal solution of Lilley’s equation for an off-axis point source. This solution is representative of high-frequency source positions in real jets and is rich in caustic structures. A full utilization of the ray tool is shown to provide excellent results<br/

    Cosmological Consequences of Slow-Moving Bubbles in First-Order Phase Transitions

    Get PDF
    In cosmological first-order phase transitions, the progress of true-vacuum bubbles is expected to be significantly retarded by the interaction between the bubble wall and the hot plasma. We examine the evolution and collision of slow-moving true-vacuum bubbles. Our lattice simulations indicate that phase oscillations, predicted and observed in systems with a local symmetry and with a global symmetry where the bubbles move at speeds less than the speed of light, do not occur inside collisions of slow-moving local-symmetry bubbles. We observe almost instantaneous phase equilibration which would lead to a decrease in the expected initial defect density, or possibly prevent defects from forming at all. We illustrate our findings with an example of defect formation suppressed in slow-moving bubbles. Slow-moving bubble walls also prevent the formation of `extra defects', and in the presence of plasma conductivity may lead to an increase in the magnitude of any primordial magnetic field formed.Comment: 10 pages, 7 figures, replaced with typos corrected and reference added. To appear in Phys. Rev.

    The ecology of methane in streams and rivers: patterns, controls, and global significance

    Get PDF
    Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO₂) is the major end‐product of ecosystem respiration, methane (CH₄) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH₄, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global‐scale estimate of fluvial CH₄ efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH₄ dynamics. Current understanding of CH₄ in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH₄ to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH₄ production and loss. CH₄ makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH₄ sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH₄ and we estimate an annual global emission of 26.8 Tg CH₄, equivalent to ~15‐40% of wetland and lake effluxes, respectively. Less clear is the role of CH₄ oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH₄ generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its extreme redox status and low solubility result in high spatial and temporal variance of CH₄ in fluvial environments, which presents a substantial challenge for understanding its larger‐scale dynamics. Further understanding of CH₄ production and consumption, anaerobic metabolism, and ecosystem energetics in streams and rivers can be achieved through more directed studies and comparison with knowledge from terrestrial, wetland, and aquatic disciplines."Support for this paper was provided by funding from the North Temperate Lakes LTER program, NSF DEB‐0822700."https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-102

    Affordances, constraints and information flows as ‘leverage points’ in design for sustainable behaviour

    Get PDF
    Copyright @ 2012 Social Science Electronic PublishingTwo of Donella Meadows' 'leverage points' for intervening in systems (1999) seem particularly pertinent to design for sustainable behaviour, in the sense that designers may have the scope to implement them in (re-)designing everyday products and services. The 'rules of the system' -- interpreted here to refer to affordances and constraints -- and the structure of information flows both offer a range of opportunities for design interventions to in fluence behaviour change, and in this paper, some of the implications and possibilities are discussed with reference to parallel concepts from within design, HCI and relevant areas of psychology
    corecore