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Abstract

Explants of embryonic chick sympathetic and sensory ganglia were found to exhibit asym-
metric radial outgrowth of neurites under standard culture conditions with or without exoge-
nous Nerve Growth Factor [NGF]. Opposing sides of an explant exhibited: a) differences in
neurite length and, b) differences in neurite morphology. Strikingly, this asymmetry exhibited
co-orientation among segregated, neighboring explants. The underlying mechanism(s) of
the asymmetry and its co-orientation are not known but appear to depend on cell clustering
because dissociated sympathetic neurons do not exhibit co-orientation whereas re-aggre-
gated clusters of cells do. This emergent behavior may be similar to the community effect
described in other cell types. If a similar phenomenon exists in the embryo, or in maturity, it
may contribute to the establishment of proper orientation of neurite outgrowth during devel-
opment and/or injury-induced neuronal plasticity.

Introduction

Neurons exhibit highly differentiated phenotypes and are among the most morphologically
diverse cell types known. Most notable are the cellular extensions [neurites], which develop
into dendrites and axons and can extend several feet in some organisms. In mammals, most
neurons are also highly polarized, with the dendritic tree usually occupying a position opposite
to that of the axon. When neurons are dissociated, placed into tissue culture, and given an
appropriate substrate, they also extend neurites that, in some cases, mimic their phenotype in
vivo, e.g., hippocampal axons and dendrites [1]. Neurons can also be cultured as tissue
explants and, under permissive conditions, will exhibit a profusion of neurites that form a
radial halo around the core of the explanted tissue [2].

This explant assay, initially using chick sensory or sympathetic ganglia, provided a means of
detecting neurite growth-promoting substances such as Nerve Growth Factor [NGF] [2] and
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remains a useful bioassay to identify factors that stimulate or inhibit neurite growth in vitro.
We used this explant assay over several years to detect and quantify neurite outgrowth in a
variety of experimental situations [3-7]. The method, established by the early experiments of
Levi-Montalcini and co-workers, involves dissection of embryonic chick sympathetic or sen-
sory ganglia and placing small pieces [approximately 1 mm?] of the tissue in culture dishes
coated with a suitably adhesive substrate [typically poly-ornithine] that permits attachment of
the explants as well as extension of neurites. When grown in a suitable culture medium, the
result is a radial halo of neurites [8-10].

In early experiments we observed that the neurite halo often had longer neurites on one
side of the explant despite the absence of any known tropic signals. Moreover, the halo was
often asymmetric with differences in neurite morphology such that one side often exhibited a
dense halo, often with flattened club-like neurites and, on the opposite side, a sparser halo with
thinner neurites. Asymmetry in both neurite length and morphology occurred under standard
culture conditions with or without exogenous NGF. Examples of asymmetric neurite out-
growth have been documented in the literature but without comment [see discussion].

The presence of asymmetric neurite outgrowth allowed for an even more unexpected obser-
vation. The halos from adjacent, but separate, explants often exhibited co-orientation of their
halos, with the longest neurites extending in the same direction. Such co-orientation was not
exhibited by dissociated neurons under the same culture conditions, but was present when dis-
sociated neurons were re-aggregated, suggesting that this is an emergent property of cell
aggregates.

Materials and methods

Sympathetic chain ganglia or sensory ganglia were dissected from embryonic chickens ranging
in age from E9 to E11. Following removal from the embryo, the ganglia were cut into small
explants [approximately 1 mm® in size] and placed in 35 mm diameter dishes [Falcon 1008,
Fisher Scientific, Houston, TX], or 6 or 12-well, multi-well dishes, that had previously been
coated overnight with poly-l-ornithine in borate buffer [pH 8.35]. Various culture media have
been used but most cultures were established either in Ham’s F12 or in serum-free Neurobasal
Medium with B27 supplement [Life Technologies, Gaithersburg, MD] [11] with or without
added NGF or proNGF in solution. Culture durations ranged from 2-4 days. Following cul-
ture, in order to visualize the neurite halo, the explants were either fixed and stained for 15
minutes with a 20% silver nitrate solution for 15 minutes followed by a 10% silver nitrate solu-
tion for 5-30 minutes, or the living cultures were loaded with a vital dye, 15 ng/ml 5-carboxy-
fluorescein diacetate AM [Molecular Probes, Eugene, OR], for 45-90 min at 37°C in Ham’s
F12 medium [Sigma, St. Louis, MO].

For other experiments, sympathetic neurons were dissociated by enzymatic digestion to
assess outgrowth of individual neurons. Sympathetic chain ganglia were incubated with 0.25%
trypsin [Sigma] for 20 min at 37°C. Trypsinization was subsequently blocked by exposure to
100% heat-inactivated fetal bovine serum [Harlan Bioproducts, Indianapolis, IN] for five min-
utes, and washed three times with serum-free Ham’s F12 medium [Sigma, St. Louis, MO]. The
tissue was then dissociated by gentle trituration using flamed Pasteur pipettes [Fisher Scien-
tific, Houston, TX]. In one experiment, the dissociated cells were then allowed to reaggregate
before placing them in culture to assess whether dissociation would interfere with the expres-
sion of explant asymmetry and co-oriented outgrowth.

A typical explant gave rise to neurites that extended radially to form a “halo.” The resulting
halo could be circular or elliptical, i.e., with a short minor axis and a longer major axis. The
explant core [containing neuronal cell bodies] may occupy a position in the center of the halo
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or offset along the major axis [but not along the minor axis], giving rise to an asymmetric halo,
albeit with bilateral symmetry on either side of the major axis. In other words, neurites system-
atically varied in length at different positions around the explant. In order to quantify the
extent of neurite length asymmetry, a macro was developed for NTH Image] [source code is
available upon request]. The perimeters of the halo and explant core were outlined and
recorded by the macro. The macro fit an ellipse to the halo and identified its major axis. The
macro determined the magnitude of neurite length asymmetry by measuring the distance
along the major axis from the midpoint of the major axis, i.e., the center of the halo, to the
explant core center. The magnitude of the neurite length asymmetry was calculated as the per-
cent distance of the core center from the halo center to the closer end of the major axis. Thus,
it was theoretically possible to have a maximum asymmetry of 100% if the entire halo extended
from only one side of the explant, a phenomenon that was never observed in our sample. In
contrast, a symmetric halo, such that the explant core is directly at the midpoint of the major
axis, would generate an asymmetry value of 0%.

In some cultures, there was asymmetry in neurite morphology with little visible asymmetry
in neurite length. This was especially the case in silver-stained explants where the longest indi-
vidual neurites were not always visible at low magnification. In order to compare the orienta-
tion of such explants based on the morphological asymmetry, images were analyzed by
blinded observers. Images of individual explants were created using round image fields to
eliminate cues caused by square edges. The images were then rotated by a random angle [each
explant was rotated by a different angle]. Two observers, blinded to the original orientation,
were asked to draw an equatorial line that best demarcated the morphologically distinct sides
of the halo. The observers were also asked to indicate which side of the equator corresponded
to the sparser halo with thinner neurites [see description in results]. The data were decoded by
reversing the random rotation. The axis of orientation of the halo was taken to be the angle of
the line perpendicular to the equatorial line, in the direction of the sparser halo with thinner
neurites. The angles measured by the two observers were averaged and plotted as axes on a
polar plot. The hypothesis that the explants were co-oriented was tested using the Rayleigh test
[12]. Axes of orientation were compared and p-values were computed based on the von Mises
distribution [circular normal distribution].

The outgrowth from dissociated neurons consists of a plexus of many intersecting neurites.
To assess whether there was a prevailing direction of growth from these cultures, Fourier
transforms of representative fields were captured. The Fourier transform shows a polar plot of
spatial frequency content. In the case where neurites are organized in parallel with each other,
the Fourier Transform detects high frequency content in the direction perpendicular to the
neurites and low frequency content in the direction parallel to the neurites. Consequently,
organized parallel growth produces an elongated perpendicular band of high signal in the Fou-
rier transform. Unorganized growth, in contrast, produces shorter, equal-length bands of high
signal at all angles. This method was used to determine if there is underlying co-orientation of
outgrowth from dissociated neurons with co-cultured explants.

Results

A typical example of a sympathetic explant with an extensive neurite halo is shown in Fig 1. In
this case, the living explant has been labeled with a vital dye. The brightly stained spherical
core consists of neuronal cell bodies, the initial segments of their neurites, and Schwann cells.
In this example, the neurite halo is asymmetric, i.e., it is wider from the lower left to the upper
right of the image [major axis] than from the upper left to the lower right [minor axis]. Along
the major axis, the explant core is closer to the right side of the halo. In other words, the
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Fig 1. An example of neurite outgrowth from an embryonic chick sympathetic ganglion explant cultured in the presence of Nerve Growth Factor [NGF] stained
with vital dye. The tissue has been labeled with a vital dye to reveal the core [bright central area] and surrounding neurites [A]. The neurite halo shows asymmetric
outgrowth with the shorter neurites extending to the right side where they form a well-defined edge [inset shown in panel B]. In contrast, the neurites on the left side are
thinner and show more variable lengths [inset shown in panel C].

https://doi.org/10.1371/journal.pone.0216263.9001

neurites are longer on one side of the halo than the other. Furthermore, on the right side, the
neurites are densely packed and exhibit a distinct boundary in contrast to those on the left side
where the neurites appear thinner and the boundary is less distinct.

An additional example of asymmetric outgrowth is shown of a sympathetic explant that has
been stained with silver [Fig 2A]. As in the example shown in Fig 1, the halo is asymmetric
with longer neurites on one [the left] side and there is a clear morphological difference
between the two sides of the halo perimeter. On the left side [Fig 2B], the neurites are separated
and variable in length whereas on the right side [Fig 2C] the neurites are densely clustered,
and many have flattened, club-like endings that are absent on the left. In general, the difference
in neurite length is easier to discern with the vital dye-stained explants and the morphological
differences are best visualized with the silver stain.

Although the examples shown in Figs 1 and 2 are representative of the types of asymmetric
outgrowth observed with both vital dye and silver staining, there was variability in the appear-
ance of the halos across different cultures. For example, not all explants exhibited asymmetry,
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Fig 2. An example of neurite outgrowth from an embryonic chick sympathetic ganglion explant stained with silver. The neurite halo shows asymmetric neurite
growth [A] such that the neurites on the left side are longer and thinner [B] than those on the right side, which also have distinct club-like endings [C].

https:/doi.org/10.1371/journal.pone.0216263.9g002

either in neurite length or morphology. Furthermore, if explants were located close to the edge
of the dish it was not possible to determine whether a halo was asymmetric.

Although we also observed asymmetric outgrowth with explants of chick sensory ganglia
[see below], the majority of our cultures were established with sympathetic explants. There-
fore, we analyzed the prevalence and extent of outgrowth asymmetry with this tissue. Neurite
length asymmetry was measured using a customized NIH Image ] macro to define the rela-
tionship between the explant core and its corresponding halo as described above [Fig 3A, 3B
and 3C]. The halo perimeter exhibits an irregular border, especially in the region where neurite
length is most variable. Neurite length asymmetry was expressed as the percent distance of the
center of the explant core from the center of the major axis of the halo. In the example shown
[Fig 3A, 3B and 3C] asymmetry was estimated at 33.8%, i.e., the explant core is displaced
33.8% towards the lower right side of the halo. Examples of the extent of neurite length asym-
metry calculated in this manner are shown in Fig 3D, 3E and 3F. The extent of asymmetry
measured in this way showed examples with virtually no neurite length asymmetry [Fig 3D,
1.8%], where the explant halo is virtually symmetric, and other cases in which there is greater
asymmetry [Fig 3E, 19.2%] and [Fig 3F, 28.7%].

To obtain some indication of the prevalence and extent of neurite length asymmetry, 603
explants from thirteen cultures grown in Neurobasal Medium for 2-4 days and then stained
with vital dye were analyzed according to the procedure described above. As shown in the his-
togram in Fig 4A, explants showed neurite length asymmetry ranging from 0 to 60% with the
mode of the distribution around 35%. Of these 603 explants, 440 of the explants [73%] exhib-
ited an asymmetry of at least 15%. The extent of neurite length asymmetry did not correlate
with either core area [Fig 4B] or halo area [Fig 4C]. Average neurite length asymmetry varied
as a function of culture duration [ANOVA, p < 0.05], decreasing substantially by day 4 [Fig
4D]. The explants were treated with various concentrations of NGF or its precursor, proNGF
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Fig 3. Quantification of the degree of neurite length asymmetry and its orientation. An example of the method is shown using the explant in panel A. A contour was
drawn around the explant halo [B] and explant core [not shown] using the Image] Freehand selection tool. Using the “Fit Ellipse” tool, ellipses were fit to the halo [C]
and the core [not shown]. The centers and major axis lengths of both ellipses were identified by the macro. The center of the explant core was compared to the distance
from the halo center to the nearest end of the major axis [arrow in C]. The magnitude of neurite length asymmetry was taken to be the percent displacement of the core
center from the halo center to the nearest end of the major axis [in this case, 33.8%]. Examples of other explants analyzed in this way are shown in D-F.

https://doi.org/10.1371/journal.pone.0216263.g003

[Fig 4E]. While neurite length asymmetry was observed with all treatments, there were slight,
but statistically significant, effects of both NGF form [p < 0.02] and concentration

[p < 0.0001] with 0.5 ng/ml of either NGF or proNGF producing the greatest neurite length
asymmetry [two-way ANOVA]. There was no significant interaction between NGF form and
concentration [p = 0.18].

In addition to the common occurrence of outgrowth asymmetry, another phenomenon
was observed when multiple explants were cultured in the same dish, whether visualized with
vital dye or silver stain. In cases where two asymmetric explants were adjacent to each other
but without physical contact, they usually shared a common orientation [Fig 5A]. Two or
more explants in sufficient proximity to each other would also extend a common asymmetric
halo [Fig 5B, 5C and 5D]. For the analysis of both asymmetry and co-orientation, only explants
that were located away from the dish edge and physically separated from each other were
included [see below].

In cases where explants were segregated, their asymmetric halos exhibited co-orientation
with neighboring explants. This was best observed with silver staining because of the ability to
visualize several explants with low power magnification using bright field illumination. An
example of a field of eight segregated sympathetic explants in a single dish is shown in Fig 6.
Each shows evidence of asymmetric neurite outgrowth, in neurite length, density and mor-
phology. In addition, the orientation of the longest neurites in each halo is in the same
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Fig 4. Prevalence and extent of neurite length asymmetry. [A] Histogram showing the prevalence of neurite length asymmetry in 603 explants cultured in Neurobasal
medium for 2-4 days and stained with vital dye. The majority showed asymmetry of at least 15%. Bivariate scattergrams showing the distribution of asymmetry as a
function of explant core [B] and halo [C] areas. The extent of neurite length asymmetry showed no direct correlation with either variable. Neurite length asymmetry
diminished by day 4 [D]. Neurite length asymmetry was present without treatment with NGF, and treatment with NGF or proNGF at various concentrations [E].
Greatest neurite length asymmetry was observed with 0.5 ng/ml NGF or proNGF. Bars in [D] and [E] represent mean + SEM.

https://doi.org/10.1371/journal.pone.0216263.9004

direction, in this case toward the right side of the field. None of the explants are in physical
contact with each other. Furthermore, co-orientation was usually a local phenomenon, i.e.,
explants on opposite sides of the dish, did not necessarily have the same orientation. In experi-
ments involving several dishes incubated at the same time, there was no indication that the
explants in one dish were oriented in the same direction as explants in an adjacent dish.

In some instances, there was morphologic asymmetry but limited or no neurite length
asymmetry. This was especially the case with explants stained with silver because the longest
individual neurites were not always visible at low magnification. To quantify the orientation of
halos showing morphological asymmetry, images of individual explants were cropped out
using round fields to eliminate extrinsic cues created by square edges and each rotated by a dif-
ferent random angle [Fig 7]. Blinded observers were then asked to draw an equatorial line that
best separated the morphologically distinct sides of the halos and indicate which side of the
halo showed the sparser halo with thinner neurites. The axis of orientation of the halo was
defined as the angle perpendicular to the equatorial line, in the direction of the sparser halo
with thinner neurites, after reversing the random rotation.

Another example of a culture in which several explants show co-orientation is shown in Fig
8. In this example, there is little asymmetry in neurite length [although the silver stain does not
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Fig 5. Explants with shared halos. Two explants growing close to each other have extended asymmetric halos, each of which shows similar orientation [A]. Two
explants may contribute to a common halo that shows asymmetry with the cores situated side-by-side [B] or in “tandem” [C]. A collection of nine explants has extended
halos that collectively exhibit a front of organized neurites [arrow] on one side that are shorter than those on the opposite side of the collective halo [D].

https://doi.org/10.1371/journal.pone.0216263.9005

reveal the longest individual neurites at this magnification] but there does appear to be asym-
metry in neurite morphology. In order to evaluate the extent of co-orientation, the six explants
in this field were evaluated using the previously described method by two subjects blinded to
the original orientation. Axes of orientation for each explant were calculated based on the
equatorial lines drawn by the two observers and the two values were averaged for each explant.
The averaged axes of orientation were plotted on the polar diagram in Fig 8 [inset, each line
indicates the orientation of one explant halo]. If the orientation of the explants was random,
the lines would be distributed around the circle. In fact, all the lines are directed toward the
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Fig 6. A field of silver-stained sympathetic explants exhibiting co-orientation of neurite halos. Each of the eight explants exhibits an asymmetric halo and the longest
neurites within each halo extend to the right side of the field. Such co-orientation of halos was a common occurrence among neighboring explants although there was no
consistent orientation from one culture dish to another.

https://doi.org/10.1371/journal.pone.0216263.9006

upper left and clustered in the upper left quadrant of the circle, indicating a non-random dis-
tribution. Rayleigh analysis of the polar plot of these averaged axes demonstrated statistically
significant co-orientation [r = 0.998; p < 0.004].

The vast majority of our cultures used embryonic chick sympathetic ganglia. However, we
have also observed asymmetric growth in sensory explants from chick embryos of comparable
age [Fig 9]. The asymmetric outgrowth is visible with both vital dye [Fig 9A] and silver staining
[Fig 9B, 9C and 9D]. As was the case for the sympathetic explants, there is a clear distinction
between the opposite sides of the explant such that the neurites on one side are longer. One dif-
ference between the sympathetic and sensory explants visualized with vital dye is that the
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Randomly
rotated
(in this case, -72°)

Fig 7. Method for quantifying the direction of morphological asymmetry. Each explant in a group was cropped using a circular field [A]. The image of each explant
was rotated randomly. A different random rotation factor was used for each explant. In this example, the explant was rotated counterclockwise by 72 degrees [B]. An
observer blinded to the original orientation was asked to assess the orientation of the rotated halo based on growth cone morphology [C]. The observer was asked to
draw a line that best demarcates morphological differences on opposite sides of the halo.

https://doi.org/10.1371/journal.pone.0216263.9007

sensory explants have an extensive halo of non-neuronal cells that almost reaches to the limit
of the shorter neurite border [Fig 9A]. However, unlike the neurite outgrowth, the distribution
of these non-neuronal cells is not notably asymmetric.

Ten cultures of sensory explants with exogenous NGF were established to determine
whether co-oriented asymmetry also occurs with this neural tissue. Fig 9B, 9C and 9D shows
an example of one such culture stained with silver in which a cluster of four sensory explants
exhibit co-oriented asymmetry [Fig 9B]. The longest neurites are all oriented in the same gen-
eral direction for each explant. A fifth explant [Fig 9C] at some distance away from the cluster
[Fig 9D] also exhibits asymmetric growth with an orientation similar to that of the cluster. Of
the 33 explants with neurite outgrowth from all ten cultures, 4 were located near the edge of
the dish such that it was impossible to determine whether outgrowth was asymmetric. Of the
remaining 29 explants, 22 [75%] showed asymmetric growth. Six of the cultures had two or
more asymmetric explants sufficiently separated from each other and the edge of the dish to
detect co-orientation. Three of these cultures showed clear co-oriented asymmetry, as shown
in Fig 9. Co-orientation was not obvious in the other three cultures where the explants were
more separated from each other.

To determine whether the orientation of explant halos was also reflected in the orientation
of neurites from individual cells in the same cultures, we combined dissociated sympathetic
cells with sympathetic explant cultures [Fig 10]. In spite of the clear asymmetry in the neurite
halo of the explant, there was no apparent directional orientation of outgrowth from individual
neurons. This conclusion is supported by Fourier transforms captured of the long side of the
explant halo and two adjacent fields containing only dissociated neurons. The middle Fourier
transform corresponds to the portion of the explant halo contained within the middle
box with the white border. An elongated perpendicular band of high signal can be observed in
the transform oriented perpendicular to the predominant direction of neurites within the
halo, i.e., extending from lower-left to upper-right. The left-most and right-most Fourier trans-
forms correspond to the left-most and right-most fields of dissociated neurons, respectively.
No band similar to that in the middle transform is present.

Finally, to assess the possibility that the asymmetry and co-orientation depend on cues
retained ex vivo after being established in the embryo, we dissociated sympathetic ganglia and
then allowed the cells to re-aggregate before placing them in culture. The re-aggregated
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Fig 8. Six silver stained explants with cores centered within circular neurite halos. Morphologic differences in the halo are evident, with tightly packed, well
organized fronts of neurites to the right and less densely packed, less organized fronts of neurites to the left. The polar diagram [inset] plots the average axis of
orientation for each explant, showing they are highly co-oriented based on blinded assessments of asymmetry [Rayleigh r = 0.998; p < 0.004].

https://doi.org/10.1371/journal.pone.0216263.9008

explants also showed asymmetric co-oriented outgrowth such that the longest neurites
extended in the same direction [arrows in Fig 11].

Discussion

This study demonstrates a seemingly simple phenomenon whereby explants of embryonic
chick sympathetic or sensory ganglia exhibit asymmetric neurite outgrowth in nominally uni-
form growth environments. Furthermore, this asymmetric growth shows local co-orientation
and is observed with cell aggregates but not with single cells. Whether this emergent asymme-
try depends on the number of cells and/or the presence of non-neural cells in the explants is
unknown. In either case, the results are consistent with the speculation for a tissue-level
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Fig 9. Sensory ganglia explants exhibit asymmetry and co-orientation. An example of a sensory ganglion explant
stained with vital dye exhibiting asymmetric neurite growth [A]. A cluster of four silver-stained sensory explants show
co-oriented asymmetry [B] along with a more distant explant in the same culture dish [C]. The inset [D] shows the
distribution of the five explants in the dish. The upper left explant core in the cluster was lost during the staining
procedure but the remnants of the neurite halo remain.

https://doi.org/10.1371/journal.pone.0216263.g009

mechanism that may operate during development and/or may have played a role in the evolu-
tionary transition to multicellularity.

The neurite halo assay was first developed to detect neurite growth-promoting substances
released by tumor tissue [2,13,14] and has been used by numerous investigators. The original
description of the results obtained when neural tissue was co-cultured with tumor tissue is
similar to our results. The neurites from a sensory explant facing the tumor were described as
showing “maximal density and a very straight course” whereas those on the opposite side were
described as “less dense and longer; the direction of their outgrowth is less straight, and some
take more winding routes” [2]. The majority of explants shown in most of the early publications
using this method do not include the full explant halo, so it is difficult to appreciate the asym-
metry being described. However, a number of images from this original work can be found,
including one on the cover of a book published by Levi-Montalcini clearly showing asymmetry
[15]. The same example was used in a review paper [16]. In fact, the description of halo asym-
metry in the 1954 paper cited above could well apply to the example shown in our Fig 1. The
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Fig 10. A sympathetic explant with asymmetric outgrowth. The longest neurites of the explant extend towards the upper left of the field contained in the middle box.
This explant was co-cultured with dissociated neurons, which show no consistent orientation in outgrowth. The insets show Fourier transforms of the three respective
white-bordered subfields showing that only the explant halo shows outgrowth in predominantly one direction [indicated by the bright line extending from the lower left
to the upper right quadrant in the middle transform].

https://doi.org/10.1371/journal.pone.0216263.9010

main experimental difference is that our neural explants were never cultured in the presence
of non-neural tissue. Nor did we observe explant halos oriented towards each other.

The shape of the neuritic halo from “control” explants was described by Levi-Montalcini as
being a “circular or ellipsoidal, perfectly geometrical ring around the explant”[17]. Although an
ellipse can theoretically be defined with the explant core at its center, the examples illustrated
by Levi-Montalcini and colleagues [for example, Fig 3B in [14] as well as our results], almost
always have the core nearer to one focus of an ellipse. Furthermore, the long trail of neurites
often present on one side gives the explant the appearance of a teardrop or comet-shaped halo.
Of the published images in the literature, some show mainly radially-symmetric outgrowth
[9,10] but there are numerous examples of asymmetric halos as well, e.g., Fig 4B of [18], Fig 1B
in [19], Fig 2 in [20], Fig 7 in [21], Fig 2A in [22], and Fig 1 in [23]. However, many published
images show only a small portion of the explant and/or its halo so that it is not possible to
determine whether asymmetric outgrowth occurred.

As in the original work involving co-cultures of neural tissue with non-neural tissue,
preferential outgrowth from neural explants co-cultured with other tissue types has been
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Fig 11. A field of “reaggregated” explants is shown stained with silver nitrate. The ganglia were first dissociated, and the cells were then allowed to form clusters
before plating. The resulting neurite halos exhibit asymmetry and the longest neurites extend in the same general direction [towards the top of the field, as indicated by
the arrows]. The neurites on the opposite side of each halo tend to be shorter and to establish a sharper boundary.

https://doi.org/10.1371/journal.pone.0216263.g011
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documented [24-30]. Other studies have used orienting stimuli, such as a local source of a
neurotrophic factor [9] or application of an electric field [31,32] to elicit asymmetric out-
growth. In most such studies, there is little information provided on the prevalence of asym-
metry in control cultures.

Unlike other studies where asymmetric outgrowth was reported in the presence of other tis-
sue or some other stimulus, the explants in the present study were cultured in nominally
homogeneous conditions. Although not all explants showed asymmetry, neurite outgrowth
from embryonic chick sympathetic ganglia was at least 15% asymmetric in 73% of the explants
quantified [the mode is 35% neurite length asymmetry, approximately that shown in the exam-
ple shown in Fig 3C]. Asymmetric outgrowth did not depend on the presence of exogenous
NGF as long as other conditions permitted the establishment of a neurite halo, e.g., the use of
Neurobasal medium [unpublished observations], although the presence of NGF may increase
asymmetry, perhaps by promoting more rapid outgrowth. Asymmetry in neurite length and
morphology did not always occur together [Fig 8] but when they did, the shorter neurites were
inevitably those with more flattened club-like endings, possibly growth cones. It is also possible
that some of the variability in the extent of asymmetry could be due to cell death or neurite
degeneration that would not be visible with the methods used here.

The mechanism([s] underlying the asymmetry and co-orientation is uncertain. Detection of
co-orientation depends on the presence of halo asymmetry. In fact, it was the co-orientation
that first brought attention to the asymmetric outgrowth. However, whether a common mech-
anism accounts for both phenomena is not clear. Although individual neurons exhibited
extensive neurite outgrowth under the same culture conditions, co-orientated growth was only
observed in explants or re-aggregated cell clusters. This suggests that co-oriented outgrowth is
an emergent property requiring a minimal number of cells analogous to what has been termed
the “community effect” in other systems, such as the differentiation of muscle cells [33-39].

In light of the evidence that various stimuli can influence neurite outgrowth in culture,
including diffusible growth factors, substrate-bound factors, and bioelectric phenomena, a
number of hypotheses can be envisioned. However, we have no direct evidence to distinguish
among these other than the fact that the orientation of outgrowth is not consistent from dish
to dish in the same experiment, which argues against a global field effect, e.g., gravity. One
could speculate on various mechanisms that might be involved in the development of asymme-
try as neurites extend and interact, such as the role of protocadherins in mediating neurite
interactions [40]. At this stage, however, we are confined to primarily qualitative observations
that require future work to uncover possible mechanisms.

If the in vitro observations reported here are at least partly attributable to phenomena that
occur during development, further studies of explants cultured under similar conditions could
reveal relevant mechanisms also operating in vivo. It would also be informative to determine
whether these phenomena occur in explants of other neural tissue as a function of develop-
mental age, anatomical location or species. At the very least, the co-oriented asymmetric out-
growth reported here suggests that there are tissue-level mechanisms that serve to organize
neural tissue in a way not previously reported. Additional experiments will be required to
account for the mechanism underlying both the expression of asymmetry and the co-orienta-
tion of neuritic halos.
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