189 research outputs found

    Mice hypomorphic for <i>Pitx3</i> show robust entrainment of circadian behavioral and metabolic rhythms to scheduled feeding

    Get PDF
    Pitx3(ak) mice lack a functioning retina and develop fewer than 10% of dopamine neurons in the substantia nigra. Del Río-Martín et al. (2019) reported that entrainment of circadian rhythms to daily light-dark (LD) cycles is absent in these mice, and that rhythms of locomotor activity, energy expenditure, and other metabolic variables are disrupted with food available ad libitum and fail to entrain to a daily feeding. The authors propose that retinal innervation of the suprachiasmatic nucleus is required for development of cyclic metabolic homeostasis, but methodological issues limit interpretation of the results. Using standardized feeding schedules and procedures for distinguishing free-running from entrained circadian rhythms, we confirm that behavioral and metabolic rhythms in Pitx3(ak) mice do not entrain to LD cycles, but we find no impairment in circadian organization of metabolism with food available ad libitum and no impairment in entrainment of metabolic or behavioral rhythms by daily feeding schedules. This Matters Arising paper is in response to Del Río-Martín et al. (2019), published in Cell Reports. See also the response by Fernandez-Perez et al. (2022), published in this issue

    Cognitive Aging in Zebrafish

    Get PDF
    BACKGROUND: Age-related impairments in cognitive functions represent a growing clinical and social issue. Genetic and behavioral characterization of animal models can provide critical information on the intrinsic and environmental factors that determine the deterioration or preservation of cognitive abilities throughout life. METHODOLOGY/PRINCIPAL FINDINGS: Behavior of wild-type, mutant and gamma-irradiated zebrafish (Danio rerio) was documented using image-analysis technique. Conditioned responses to spatial, visual and temporal cues were investigated in young, middle-aged and old animals. The results demonstrate that zebrafish aging is associated with changes in cognitive responses to emotionally positive and negative experiences, reduced generalization of adaptive associations, increased stereotypic and reduced exploratory behavior and altered temporal entrainment. Genetic upregulation of cholinergic transmission attenuates cognitive decline in middle-aged achesb55/+ mutants, compared to wild-type siblings. In contrast, the genotoxic stress of gamma-irradiation accelerates the onset of cognitive impairment in young zebrafish. CONCLUSIONS/SIGNIFICANCE: These findings would allow the use of powerful molecular biological resources accumulated in the zebrafish field to address the mechanisms of cognitive senescence, and promote the search for therapeutic strategies which may attenuate age-related cognitive decline

    Robust Food Anticipatory Activity in BMAL1-Deficient Mice

    Get PDF
    Food availability is a potent environmental cue that directs circadian locomotor activity in rodents. Even though nocturnal rodents prefer to forage at night, daytime food anticipatory activity (FAA) is observed prior to short meals presented at a scheduled time of day. Under this restricted feeding regimen, rodents exhibit two distinct bouts of activity, a nocturnal activity rhythm that is entrained to the light-dark cycle and controlled by the master clock in the suprachiasmatic nuclei (SCN) and a daytime bout of activity that is phase-locked to mealtime. FAA also occurs during food deprivation, suggesting that a food-entrainable oscillator (FEO) keeps time in the absence of scheduled feeding. Previous studies have demonstrated that the FEO is anatomically distinct from the SCN and that FAA is observed in mice lacking some circadian genes essential for timekeeping in the SCN. In the current study, we optimized the conditions for examining FAA during restricted feeding and food deprivation in mice lacking functional BMAL1, which is critical for circadian rhythm generation in the SCN. We found that BMAL1-deficient mice displayed FAA during restricted feeding in 12hr light:12hr dark (12L:12D) and 18L:6D lighting cycles, but distinct activity during food deprivation was observed only in 18L:6D. While BMAL1-deficient mice also exhibited robust FAA during restricted feeding in constant darkness, mice were hyperactive during food deprivation so it was not clear that FAA consistently occurred at the time of previously scheduled food availability. Taken together, our findings suggest that optimization of experimental conditions such as photoperiod may be necessary to visualize FAA in genetically modified mice. Furthermore, the expression of FAA may be possible without a circadian oscillator that depends on BMAL1

    Body weight, metabolism and clock genes

    Get PDF
    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity

    Circadian Cycles of Gene Expression in the Coral, Acropora millepora

    Get PDF
    Background: Circadian rhythms regulate many physiological, behavioral and reproductive processes. These rhythms are often controlled by light, and daily cycles of solar illumination entrain many clock regulated processes. In scleractinian corals a number of different processes and behaviors are associated with specific periods of solar illumination or nonillumination—for example, skeletal deposition, feeding and both brooding and broadcast spawning. Methodology/Principal Findings: We have undertaken an analysis of diurnal expression of the whole transcriptome and more focused studies on a number of candidate circadian genes in the coral Acropora millepora using deep RNA sequencing and quantitative PCR. Many examples of diurnal cycles of RNA abundance were identified, some of which are light responsive and damped quickly under constant darkness, for example, cryptochrome 1 and timeless, but others that continue to cycle in a robust manner when kept in constant darkness, for example, clock, cryptochrome 2, cycle and eyes absent, indicating that their transcription is regulated by an endogenous clock entrained to the light-dark cycle. Many other biological processes that varied between day and night were also identified by a clustering analysis of gene ontology annotations. Conclusions/Significance: Corals exhibit diurnal patterns of gene expression that may participate in the regulation of circadian biological processes. Rhythmic cycles of gene expression occur under constant darkness in both populations o

    Analysis Method and Experimental Conditions Affect Computed Circadian Phase from Melatonin Data

    Get PDF
    Accurate determination of circadian phase is necessary for research and clinical purposes because of the influence of the master circadian pacemaker on multiple physiologic functions. Melatonin is presently the most accurate marker of the activity of the human circadian pacemaker. Current methods of analyzing the plasma melatonin rhythm can be grouped into three categories: curve-fitting, threshold-based and physiologically-based linear differential equations. To determine which method provides the most accurate assessment of circadian phase, we compared the ability to fit the data and the variability of phase estimates for seventeen different markers of melatonin phase derived from these methodological categories. We used data from three experimental conditions under which circadian rhythms - and therefore calculated melatonin phase - were expected to remain constant or progress uniformly. Melatonin profiles from older subjects and subjects with lower melatonin amplitude were less likely to be fit by all analysis methods. When circadian drift over multiple study days was algebraically removed, there were no significant differences between analysis methods of melatonin onsets (P = 0.57), but there were significant differences between those of melatonin offsets (P<0.0001). For a subset of phase assessment methods, we also examined the effects of data loss on variability of phase estimates by systematically removing data in 2-hour segments. Data loss near onset of melatonin secretion differentially affected phase estimates from the methods, with some methods incorrectly assigning phases too early while other methods assigning phases too late; missing data at other times did not affect analyses of the melatonin profile. We conclude that melatonin data set characteristics, including amplitude and completeness of data collection, differentially affect the results depending on the melatonin analysis method used

    Precision QCD, Hadronic Structure & Forward QCD, Heavy Ions: Report of Energy Frontier Topical Groups 5, 6, 7 submitted to Snowmass 2021

    Full text link
    This report was prepared on behalf of three Energy Frontier Topical Groups of the Snowmass 2021 Community Planning Exercise. It summarizes the status and implications of studies of strong interactions in high-energy experiments and QCD theory. We emphasize the rich landscape and broad impact of these studies in the decade ahead. Hadronic interactions play a central role in the high-luminosity Large Hadron Collider (LHC) physics program, and strong synergies exist between the (HL-)LHC and planned or proposed experiments at the U.S. Electron-Ion Collider, CERN forward physics experiments, high-intensity facilities, and future TeV-range lepton and hadron colliders. Prospects for precision determinations of the strong coupling and a variety of nonperturbative distribution and fragmentation functions are examined. We also review the potential of envisioned tests of new dynamical regimes of QCD in high-energy and high-density scattering processes with nucleon, ion, and photon initial states. The important role of the high-energy heavy-ion program in studies of nuclear structure and the nuclear medium, and its connections with QCD involving nucleons are summarized. We address ongoing and future theoretical advancements in multi-loop QCD computations, lattice QCD, jet substructure, and event generators. Cross-cutting connections between experimental measurements, theoretical predictions, large-scale data analysis, and high-performance computing are emphasized.Comment: 95 pages (bibliography 30 pages), 28 figures; v.2: minor changes, authors and references adde

    A Fear-Inducing Odor Alters PER2 and c-Fos Expression in Brain Regions Involved in Fear Memory

    Get PDF
    Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus
    corecore