897 research outputs found

    Spacecraft drag-free technology development: On-board estimation and control synthesis

    Get PDF
    Estimation and control methods for a Drag-Free spacecraft are discussed. The functional and analytical synthesis of on-board estimators and controllers for an integrated attitude and translation control system is represented. The framework for detail definition and design of the baseline drag-free system is created. The techniques for solution of self-gravity and electrostatic charging problems are applicable generally, as is the control system development

    Adhesion formation after intracapsular myomectomy with or without adhesion barrier.

    Get PDF
    Objective: To show the prevention of adhesion formation by placing an absorbable adhesion barrier after intracapsular myomectomy. Design: Prospective blinded observational study. Setting: University-affiliated Hospitals. Patient(s): Patients R18 years old with single or multiple uterine fibroids removed by laparoscopic or abdominal intracapsular myomectomy. Intervention(s): A total of 694 women undergoing laparoscopic or abdominal myomectomy were randomized for placement of oxidized regenerated cellulose absorbable adhesion barrier to the uterine incision or for control subjects without barriers. The presence of adhesions was assessed in 546 patients who underwent subsequent surgery. MainOutcomeMeasure(s): Theprimaryandsecondaryoutcomesoftheanalysiswerethepresenceandseverityof adhesions for four groups: laparotomy with barrier, laparotomy without barrier, laparoscopy with barrier, and laparoscopy without barrier. Result(s): Therewasahigherrateofadhesionsinlaparotomywithoutbarrier(28.1%)comparedwithlaparoscopy with no barrier (22.6%), followed by laparotomy with barrier (22%) and laparoscopy with barrier (15.9%). Additionally, the type of adhesions were different, filmy and organized were predominant with an adhesion barrier, and cohesive adhesions were more common without an adhesion barrier. Conclusion(s): Oxidized regenerated cellulose reduces postsurgical adhesions. Cohesive adhesions reduction was noted in laparoscopy

    Twistor geometry of a pair of second order ODEs

    Full text link
    We discuss the twistor correspondence between path geometries in three dimensions with vanishing Wilczynski invariants and anti-self-dual conformal structures of signature (2,2)(2, 2). We show how to reconstruct a system of ODEs with vanishing invariants for a given conformal structure, highlighting the Ricci-flat case in particular. Using this framework, we give a new derivation of the Wilczynski invariants for a system of ODEs whose solution space is endowed with a conformal structure. We explain how to reconstruct the conformal structure directly from the integral curves, and present new examples of systems of ODEs with point symmetry algebra of dimension four and greater which give rise to anti--self--dual structures with conformal symmetry algebra of the same dimension. Some of these examples are (2,2)(2, 2) analogues of plane wave space--times in General Relativity. Finally we discuss a variational principle for twistor curves arising from the Finsler structures with scalar flag curvature.Comment: Final version to appear in the Communications in Mathematical Physics. The procedure of recovering a system of torsion-fee ODEs from the heavenly equation has been clarified. The proof of Prop 7.1 has been expanded. Dedicated to Mike Eastwood on the occasion of his 60th birthda

    A case of unilateral keloid after bilateral breast reduction

    Get PDF
    Keloid scar is a manifestation of abnormal wound healing in predisposed individuals. Many treatment modalities have been tried with varying degrees of success. Radiotherapy is one such modality that is widely recognised. We present a case report and literature review based on a patient who developed unilateral keloid scarring following bilateral breast reduction surgery. Some 4 years previously, she had undergone breast conserving surgery followed by adjuvant radiotherapy for breast cancer. After her breast reduction surgery, she developed keloid scarring on the non-irradiated breast only. This case highlights a possible 'preventative' effect of radiotherapy in keloid formation

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Get PDF
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

    Full text link
    We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a νμ\nu_\mu charged current neutral pion data samples

    Solving path planning problems in urban environments based on a priori sensor availability and execution error propagation

    Get PDF
    This paper addresses safe path planning problem in urban environments under onboard sensor availability uncertainty. In this context, an approach based on Mixed-Observability Markov Decision Process (MOMDP) is presented. Such a model enables the planner to deal with a priori probabilistic sensor availability and path execution error propagation, the which depends on the navigation solution. Due to modelling particularities of this safe path planning problem, such as bounded hidden and fully observable state variables, discrete actions and particular transition function form, the belief state update function becomes a complex step that cannot be ignored during planning. Recent advances in Partially Observable Markov Decision Process (POMDP) solving have proposed a planning algorithm called POMCP, which is based on Monte-Carlo Tree Search method. It allows the planner to work on the history of the action-observation pairs without the need to compute belief state updates. Thereby, this paper proposes to apply a POMCP-like algorithm to solve the addressed MOMDP safe path planning problem. The obtained results show the feasibility of the approach and the impact of considering different a priori probabilistic sensor availability on the result policy
    corecore