897 research outputs found
Spacecraft drag-free technology development: On-board estimation and control synthesis
Estimation and control methods for a Drag-Free spacecraft are discussed. The functional and analytical synthesis of on-board estimators and controllers for an integrated attitude and translation control system is represented. The framework for detail definition and design of the baseline drag-free system is created. The techniques for solution of self-gravity and electrostatic charging problems are applicable generally, as is the control system development
Adhesion formation after intracapsular myomectomy with or without adhesion barrier.
Objective: To show the prevention of adhesion formation by placing an absorbable adhesion barrier after intracapsular myomectomy. Design: Prospective blinded observational study. Setting: University-affiliated Hospitals.
Patient(s): Patients R18 years old with single or multiple uterine fibroids removed by laparoscopic or abdominal intracapsular myomectomy. Intervention(s): A total of 694 women undergoing laparoscopic or abdominal myomectomy were randomized for placement of oxidized regenerated cellulose absorbable adhesion barrier to the uterine incision or for control subjects without barriers. The presence of adhesions was assessed in 546 patients who underwent subsequent surgery.
MainOutcomeMeasure(s): Theprimaryandsecondaryoutcomesoftheanalysiswerethepresenceandseverityof adhesions for four groups: laparotomy with barrier, laparotomy without barrier, laparoscopy with barrier, and laparoscopy without barrier. Result(s): Therewasahigherrateofadhesionsinlaparotomywithoutbarrier(28.1%)comparedwithlaparoscopy with no barrier (22.6%), followed by laparotomy with barrier (22%) and laparoscopy with barrier (15.9%). Additionally, the type of adhesions were different, filmy and organized were predominant with an adhesion barrier, and cohesive adhesions were more common without an adhesion barrier.
Conclusion(s): Oxidized regenerated cellulose reduces postsurgical adhesions. Cohesive adhesions reduction was noted in laparoscopy
Twistor geometry of a pair of second order ODEs
We discuss the twistor correspondence between path geometries in three
dimensions with vanishing Wilczynski invariants and anti-self-dual conformal
structures of signature . We show how to reconstruct a system of ODEs
with vanishing invariants for a given conformal structure, highlighting the
Ricci-flat case in particular. Using this framework, we give a new derivation
of the Wilczynski invariants for a system of ODEs whose solution space is
endowed with a conformal structure. We explain how to reconstruct the conformal
structure directly from the integral curves, and present new examples of
systems of ODEs with point symmetry algebra of dimension four and greater which
give rise to anti--self--dual structures with conformal symmetry algebra of the
same dimension. Some of these examples are analogues of plane wave
space--times in General Relativity. Finally we discuss a variational principle
for twistor curves arising from the Finsler structures with scalar flag
curvature.Comment: Final version to appear in the Communications in Mathematical
Physics. The procedure of recovering a system of torsion-fee ODEs from the
heavenly equation has been clarified. The proof of Prop 7.1 has been
expanded. Dedicated to Mike Eastwood on the occasion of his 60th birthda
A case of unilateral keloid after bilateral breast reduction
Keloid scar is a manifestation of abnormal wound healing in predisposed individuals. Many treatment modalities have been tried with varying degrees of success. Radiotherapy is one such modality that is widely recognised. We present a case report and literature review based on a patient who developed unilateral keloid scarring following bilateral breast reduction surgery. Some 4 years previously, she had undergone breast conserving surgery followed by adjuvant radiotherapy for breast cancer. After her breast reduction surgery, she developed keloid scarring on the non-irradiated breast only. This case highlights a possible 'preventative' effect of radiotherapy in keloid formation
Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE
The single-phase liquid argon time projection chamber (LArTPC) provides a
large amount of detailed information in the form of fine-grained drifted
ionization charge from particle traces. To fully utilize this information, the
deposited charge must be accurately extracted from the raw digitized waveforms
via a robust signal processing chain. Enabled by the ultra-low noise levels
associated with cryogenic electronics in the MicroBooNE detector, the precise
extraction of ionization charge from the induction wire planes in a
single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event
display images, and quantitatively demonstrated via waveform-level and
track-level metrics. Improved performance of induction plane calorimetry is
demonstrated through the agreement of extracted ionization charge measurements
across different wire planes for various event topologies. In addition to the
comprehensive waveform-level comparison of data and simulation, a calibration
of the cryogenic electronics response is presented and solutions to various
MicroBooNE-specific TPC issues are discussed. This work presents an important
improvement in LArTPC signal processing, the foundation of reconstruction and
therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at
arXiv:1802.0870
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber
We have developed a convolutional neural network (CNN) that can make a
pixel-level prediction of objects in image data recorded by a liquid argon time
projection chamber (LArTPC) for the first time. We describe the network design,
training techniques, and software tools developed to train this network. The
goal of this work is to develop a complete deep neural network based data
reconstruction chain for the MicroBooNE detector. We show the first
demonstration of a network's validity on real LArTPC data using MicroBooNE
collection plane images. The demonstration is performed for stopping muon and a
charged current neutral pion data samples
Solving path planning problems in urban environments based on a priori sensor availability and execution error propagation
This paper addresses safe path planning problem in urban environments under onboard sensor availability uncertainty. In this context, an approach based on Mixed-Observability Markov Decision Process (MOMDP) is presented. Such a model enables the planner to deal with a priori probabilistic sensor availability and path execution error propagation, the which depends on the navigation solution. Due to modelling particularities of this safe path planning problem, such as bounded hidden and fully observable state variables, discrete actions and particular transition function form, the belief state update function becomes a complex step that cannot be ignored during planning. Recent advances in Partially Observable Markov Decision Process (POMDP) solving have proposed a planning algorithm called POMCP, which is based on Monte-Carlo Tree Search method. It allows the planner to work on the history of the action-observation pairs without the need to compute belief state updates. Thereby, this paper proposes to apply a POMCP-like algorithm to solve the addressed MOMDP safe path planning problem. The obtained results show the feasibility of the approach and the impact of considering different a priori probabilistic sensor availability on the result policy
- …