3,442 research outputs found

    A two-lobe Journal Bearing with adjustable Gap Geometry for Vibration Reduction of flexible Rotors

    Get PDF
    Flexible rotors in journal bearings can exhibit large vibration amplitudes during the passage of bending critical speeds.  To reduce these vibrations, a two-lobe journal bearing with adjustable gap geometry is presented. By an adjustment of  the gap height, stiffness and damping properties of the bearing and as a consequence the damping ratio of the rotor  system can be varied during the operation. When the system passes a critical speed in a run-up process, a large gap is  adjusted for higher damping. After the resonance pass through, the gap height is reduced to increase the load  carrying  capacity and to enlarge the stability margin. Investigating the Jeffcott rotor in adjustable journal bearings demonstrates the basic effects. For a validation, a test rig is set up and a related mathematical model is created.  Various experiments are made and compared with numerical results

    The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen

    Get PDF
    BACKGROUND: The facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen utilizes acyclic, monocyclic and bicyclic monoterpenes as sole carbon source under oxic as well as anoxic conditions. A biotransformation pathway of the acyclic β-myrcene required linalool dehydratase-isomerase as initial enzyme acting on the hydrocarbon. An in-frame deletion mutant did not use myrcene, but was able to grow on monocyclic monoterpenes. The genome sequence and a comparative proteome analysis together with a random transposon mutagenesis were conducted to identify genes involved in the monocyclic monoterpene metabolism. Metabolites accumulating in cultures of transposon and in-frame deletion mutants disclosed the degradation pathway. RESULTS: Castellaniella defragrans 65Phen oxidizes the monocyclic monoterpene limonene at the primary methyl group forming perillyl alcohol. The genome of 3.95 Mb contained a 70 kb genome island coding for over 50 proteins involved in the monoterpene metabolism. This island showed higher homology to genes of another monoterpene-mineralizing betaproteobacterium, Thauera terpenica 58Eu(T), than to genomes of the family Alcaligenaceae, which harbors the genus Castellaniella. A collection of 72 transposon mutants unable to grow on limonene contained 17 inactivated genes, with 46 mutants located in the two genes ctmAB (cyclic terpene metabolism). CtmA and ctmB were annotated as FAD-dependent oxidoreductases and clustered together with ctmE, a 2Fe-2S ferredoxin gene, and ctmF, coding for a NADH:ferredoxin oxidoreductase. Transposon mutants of ctmA, B or E did not grow aerobically or anaerobically on limonene, but on perillyl alcohol. The next steps in the pathway are catalyzed by the geraniol dehydrogenase GeoA and the geranial dehydrogenase GeoB, yielding perillic acid. Two transposon mutants had inactivated genes of the monoterpene ring cleavage (mrc) pathway. 2-Methylcitrate synthase and 2-methylcitrate dehydratase were also essential for the monoterpene metabolism but not for growth on acetate. CONCLUSIONS: The genome of Castellaniella defragrans 65Phen is related to other genomes of Alcaligenaceae, but contains a genomic island with genes of the monoterpene metabolism. Castellaniella defragrans 65Phen degrades limonene via a limonene dehydrogenase and the oxidation of perillyl alcohol. The initial oxidation at the primary methyl group is independent of molecular oxygen

    Effect of Hydrostatic Pressure on the Superconductivity in NaxCoO2.yH2O

    Full text link
    The effect of hydrostatic pressure on the superconducting transition temperature of Na{0.35}CoO{2}.yH{2}O was investigated by ac susceptibility measurements up to 1.6 GPa. The pressure coefficient of T{c} is negative and the dependence T{c}(p) is nonlinear over the pressure range investigated. The magnitude of the average dlnT{c}/dp=-0.07 GPa^{-1} is comparable to the pressure coefficient of electron-doped high-T{c} copper oxide superconductors with a similar value of T{c}. Our results provide support to the assumption of two-dimensional superconductivity in Na{0.35}CoO{2}.yH{2}O, which is similar to the cuprate systems, and suggest that intercalation of larger molecules may lead to an enhancement of T{c}.Comment: Revised Manuscrip

    Influence of geometric and physical nonlinearities on the internal resonances of a finite continuous rod with a microstructure

    Get PDF
    In this work, nonlinear longitudinal vibrations of a finite composite rod are studied including geometric and physical nonlinearities. An original boundary value problem for a heterogeneous rod yielded by the macroscopic approximation obtained earlier by the higher-order asymptotic homogenization method is used. The effects of internal resonances and modes coupling are predicted, validated and analyzed. The defined novel continuous problem governed by PDEs is solved using space-discretization and the method of multiple time scales. We are aimed at understanding and analyzing how the presence of the microstructure influences the processes of mode interaction. It is shown that, depending on a scaling relation between the amplitude of the vibrations and the size of the unit cell, different scenarios of the modes coupling can be realized. Additionally to the asymptotic solution, numerical simulation of the modes coupling is performed by means of the Runge-Kutta fourth-order method. The obtained numerical and analytical results demonstrate good qualitative agreement

    Possible glueball production in relativistic heavy-ion collisions

    Get PDF
    Within a thermal model we estimate possible multiplicities of scalar glueballs in central Au+Au collisions at AGS, SPS, RHIC and LHC energies. For the glueball mass in the region 1.5-1.7 GeV, the model predicts on average (per event) 0.5-1.5 glueballs at RHIC and 1.5-4 glueballs at LHC energies. Possible enhancement mechanisms are discussed.Comment: 8 pages, 2 figure

    Linalool isomerase, a membrane-anchored enzyme in the anaerobic monoterpene degradation in Thauera linaloolentis 47Lol

    Get PDF
    Background: Thauera linaloolentis 47Lol uses the tertiary monoterpene alcohol (R,S)-linalool as sole carbon and energy source under denitrifying conditions. The conversion of linalool to geraniol had been observed in carbon-excess cultures, suggesting the presence of a 3,1-hydroxyl-Delta(1)-Delta(2)-mutase (linalool isomerase) as responsible enzyme. To date, only a single enzyme catalyzing such a reaction is described: the linalool dehydratase/isomerase (Ldi) from Castellaniella defragrans 65Phen acting only on (S)-linalool. Results: The linalool isomerase activity was located in the inner membrane. It was enriched by subcellular fractionation and sucrose gradient centrifugation. MALDI-ToF MS analysis of the enriched protein identified the corresponding gene named lis that codes for the protein in the strain with the highest similarity to the Ldi. Linalool isomerase is predicted to have four transmembrane helices at the N-terminal domain and a cytosolic domain. Enzyme activity required a reductant for activation. A specific activity of 3.42 +/- 0.28 nkat mg * protein(-1) and a k(M) value of 455 +/- 124 mu M were determined for the thermodynamically favored isomerization of geraniol to both linalool isomers at optimal conditions of pH 8 and 35 degrees C. Conclusion: The linalool isomerase from T. linaloolentis 47Lol represents a second member of the enzyme class 5.4.4.4, next to the linalool dehydratase/isomerase from C. defragrans 65Phen. Besides considerable amino acid sequence similarity both enzymes share common characteristics with respect to substrate affinity, pH and temperature optima, but differ in the dehydratase activity and the turnover of linalool isomers

    Quantification of total T-cell receptor diversity by flow cytometry and spectratyping

    Get PDF
    BACKGROUND: T-cell receptor diversity correlates with immune competency and is of particular interest in patients undergoing immune reconstitution. Spectratyping generates data about T-cell receptor CDR3 length distribution for each BV gene but is technically complex. Flow cytometry can also be used to generate data about T-cell receptor BV gene usage, but its utility has not been compared to or tested in combination with spectratyping. RESULTS: Using flow cytometry and spectratype data, we have defined a divergence metric that quantifies the deviation from normal of T-cell receptor repertoire. We have shown that the sample size is a sensitive parameter in the predicted flow divergence values, but not in the spectratype divergence values. We have derived two ways to correct for the measurement bias using mathematical and statistical approaches and have predicted a lower bound in the number of lymphocytes needed when using the divergence as a substitute for diversity. CONCLUSIONS: Using both flow cytometry and spectratyping of T-cells, we have defined the divergence measure as an indirect measure of T-cell receptor diversity. We have shown the dependence of the divergence measure on the sample size before it can be used to make predictions regarding the diversity of the T-cell receptor repertoire

    Novel Synthesis and High Pressure Behavior of Na0.3CoO2 x 1.3 H2O and Related Phases

    Full text link
    We have prepared powder samples of NaxCoO2 x yH2O using a new synthesis route. Superconductivity was observed in Na0.3CoO2 x 1.3H2O between 4 and 5K as indicated by the magnetic susceptibility. The bulk compressibilities of Na0.3CoO2 x 1.3H2O, Na0.3CoO2 x 0.6H2O and Na0.3CoO2 were determined using a diamond anvil cell and synchrotron powder diffraction. Chemical changes occurring under pressure when using different pressure transmitting media are discussed and further transport measurements are advocated.Comment: 7 pages, 4 figures, PRrapid submitte

    Design of the Pluto Event Generator

    Full text link
    We present the design of the simulation package Pluto, aimed at the study of hadronic interactions at SIS and FAIR energies. Its main mission is to offer a modular framework with an object-oriented structure, thereby making additions such as new particles, decays of resonances, new models up to modules for entire changes easily applicable. Overall consistency is ensured by a plugin- and distribution manager. Particular features are the support of a modular structure for physics process descriptions, and the possibility to access the particle stream for on-line modifications. Additional configuration and self-made classes can be attached by the user without re-compiling the package, which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High Energy and Nuclear Physic
    • …
    corecore