208 research outputs found

    GENIUS and the Genius TF: A New Observatory for WIMP Dark Matter and Neutrinoless Double Beta Decay

    Get PDF
    The GENIUS proposal is described and some of it's physics potential is outlined. Also in the light of the contradictive results from the DAMA and CDMS experiments the Genius TF, a new experimental setup is proposed. The Genius TF could probe the DAMA evidence region using the WIMP nucleus recoil signal and WIMP annual modulation signature simultaneously. Besides that it can prove the long term feasibility of the detector technique to be implemented into the GENIUS setup and will in this sense be a first step towards the realization of the GENIUS experiment.Comment: 10 pages, revtex, 4 figures, Talk was presented at 3rd International Workshop on the Identification of Dark Matter, IDM2000, York, England, September 18-22, 2000, to be publ. in proc. World Scoentific (2001). Home Page of Heidelberg Non-Accelerator Particle Physics Group (GENIUS Experiment): http://www.mpi-hd.mpg.de/non_acc/genius.htm

    Phase II Upgrade of the GERDA Experiment for the Search of Neutrinoless Double Beta Decay

    Get PDF
    AbstractObservation of neutrinoless double beta decay could answer the question regarding the Majorana or Dirac nature of neutrinos. The GERDA experiment utilizes HPGe detectors enriched with the isotope 76Ge to search for this process. Recently the GERDA collaboration has unblinded data of Phase I of the experiment. In order to further improve the sensitivity of the experiment, additionally to the coaxial detectors used, 30 BEGe detectors made from germanium enriched in 76Ge will be deployed in GERDA Phase II.BEGe detectors have superior PSD capability, thus the background can be further reduced. The liquid argon surrounding the detector array will be instrumented in order to reject background by detecting scintillation light induced in the liquid argon by radiation. After a short introduction the hardware preparations for GERDA Phase II as well as the processing and characterization of the 30 BEGe detectors are discussed

    Identification of photons in double beta-decay experiments using segmented germanium detectors - studies with a GERDA Phase II prototype detector

    Get PDF
    The sensitivity of experiments searching for neutrinoless double beta-decay of germanium was so far limited by the background induced by external gamma-radiation. Segmented germanium detectors can be used to identify photons and thus reduce this background component. The GERmanium Detector Array, GERDA, will use highly segmented germanium detectors in its second phase. The identification of photonic events is investigated using a prototype detector. The results are compared with Monte Carlo data.Comment: 20 pages, 7 figures, to be submitted to NIM-

    Deep learning based pulse shape discrimination for germanium detectors

    Full text link
    Experiments searching for rare processes like neutrinoless double beta decay heavily rely on the identification of background events to reduce their background level and increase their sensitivity. We present a novel machine learning based method to recognize one of the most abundant classes of background events in these experiments. By combining a neural network for feature extraction with a smaller classification network, our method can be trained with only a small number of labeled events. To validate our method, we use signals from a broad-energy germanium detector irradiated with a 228^{228}Th gamma source. We find that it matches the performance of state-of-the-art algorithms commonly used for this detector type. However, it requires less tuning and calibration and shows potential to identify certain types of background events missed by other methods.Comment: Published in Eur. Phys. J. C. 9 pages, 10 figures, 3 table

    Pulse shape simulation for segmented true-coaxial HPGe detectors

    Get PDF
    A new package to simulate the formation of electrical pulses in segmented true-coaxial high purity germanium detectors is presented. The computation of the electric field and weighting potentials inside the detector as well as of the trajectories of the charge carriers is described. In addition, the treatment of bandwidth limitations and noise are discussed. Comparison of simulated to measured pulses, obtained from an 18-fold segmented detector operated inside a cryogenic test facility, are presented.Comment: 20 pages, 16 figure

    The GALATEA Test-Facility for High Purity Germanium Detectors

    Full text link
    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses an infrared screened volume with a cooled detector inside. A system of three stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources as well as of a laser beam to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning

    GENIUS-TF: a test facility for the GENIUS project

    Get PDF
    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the GENIUS test facility, will be build up at the Laboratorio Nazionale del Gran Sasso (LNGS). With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation signature within about two years of measurement.Comment: 14 pages, latex, 5 figures, 3 tables; submitted to Astroparticle Physic
    • …
    corecore