513 research outputs found

    Spontaneous brillouin scattering quench diagnostics for large superconducting magnets

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2008.Cataloged from PDF version of thesis.Includes bibliographical references (p. 243-250).Large superconducting magnets used in fusion reactors, as well as other applications, need a diagnostic that can non-invasively measure the temperature and strain throughout the magnet in real-time. A new fiber optic sensor has been developed for these long-length superconducting magnets that simultaneously measures the temperature and strain based on spontaneous Brillouin scattering in an optical fiber. Using an extremely narrow (200 Hz) linewidth Brillouin laser with very low noise as a frequency shifted local oscillator, the frequency shift of spontaneous Brillouin scattered light was measured using heterodyne detection. A pulsed laser was used to probe the fiber using Optical Time Domain Reflectometry (OTDR) to define the spatial resolution. The spontaneous Brillouin frequency shift and linewidth as a function of temperature agree well with previous literature of stimulated Brillouin data from room temperature down to 4 K. Analyzing the frequency spectrum of the scattered light after an FFT gives the Brillouin frequency shift, linewidth. and intensity. For the first time, these parameters as a function of strain have been calibrated down to 4 K. Measuring these three parameters allow for simultaneously determining the temperature and strain in real-time throughout a fiber with a spatial resolution on the order of several meters. The accuracy of the temperature and strain measurements vary over temperature-strain space, but an accuracy of better than + 2 K and ± 100 Pe are possible throughout most of the calibrated temperature-strain space (4-298 K and 0-3500 p/g). In the area of interest for low-temperature superconducting magnets (4-25 K), the temperature accuracy is better than + 1 degree.(cont.) This temperature accuracy, along with the sub-second measurement time, allows this system to be used not only as a quench detection system, but also as a quench propagation diagnostic. The sensing fiber can also simultaneously provide the first ever spatially resolved strain measurement in an operating magnet.by Scott Brian Mahar.Ph.D

    Multiple frequency electron cyclotron heating for the Levitated Dipole Experiment

    Get PDF
    Thesis (S.M. and S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2005.Includes bibliographical references (p. 75-76).The use of multiple frequencies of electron cyclotron resonance heating (ECRH) in the Levitated Dipole Experiment (LDX) is an important tool that will tailor the plasma profiles. Initial LDX plasmas have been created using 2.45 GHz and 6.4 GHz, both at up to 3 kW. The construction and calibration of the ECRH system will be discussed and initial experimental results will be presented. The effects of different combinations of pulse lengths and powers will be examined in terms of the plasma diamagnetism. Different density profiles will be used to calculate the locations of the resonances and cutoffs. Locations where the plasma absorbs the microwave power will be simulated through computer codes. Equilibrium output of the program DIPOLEQ combined with MATLAB calculations using the Appleton-Hartree dispersion relation provide qualitative representations of where the power is absorbed in typical LDX plasmas.by Scott B. Mahar.S.M.and S.B

    The Wool ComfortMeter and the Wool HandleMeter, new opportunities for wool

    Full text link
    Two instruments have been developed by the Sheep CRC that provide the tools for a new standard in comfort and handle for the next generation of next-to-skin wool knitwear. The Wool ComfortMeter and Wool HandleMeter provide a rapid, accurate and objective measure of two important characteristics of wool knitwear that are currently determined by subjective assessment. The Wool HandleMeter allows the prediction of a set of handle attribute values that can quantify the hand feel of a lightweight jersey fabric. The instrument uses the principle of pushing a fabric sample through a ring. The force displacement curve associated with the fabric test is characterised and used to define each fabric. These values were then compared to the average handle values, as determined by a group of experts, of a large set of lightweight knitted fabrics. Algorithms were developed that enable the instrument to more accurately predict each of seven handle attributes than an individual expert. The Wool ComfortMeter provides a measure of the fibres that are protruding from the surface of the fabric that are responsible for the itchy sensation caused by some knitwear. The results from the instrument have been compared to the results from extensive wearer trials to provide an understanding of the relationship between the instrument value and the comfort perceptions of wearers. The results have shown a very clear relationship between the instrument and wearer trials

    Spirituality and attitudes towards nature in the Pacific Islands: insights for enabling climate - change adaptation

    Get PDF
    A sample of 1226 students at the University of the South Pacific, the premier tertiary institution in the Pacific Islands, answered a range of questions intended to understand future island decision-makers’ attitudes towards Nature and concern about climate change. Questions asking about church attendance show that the vast majority of participants have spiritual values that explain their feelings of connectedness to Nature which in turn may account for high levels of pessimism about the current state of the global/Pacific environment. Concern about climate change as a future livelihood stressor in the Pacific region is ubiquitous at both societal and personal levels. While participants exhibited a degree of understanding matching objective rankings about the vulnerability of their home islands/countries, a spatial optimism bias was evident in which ‘other places’ were invariably regarded as ‘worse’. Through their views on climate change concern, respondents also favoured a psychological distancing of environmental risk in which ‘other places’ were perceived as more exposed than familiar ones. Influence from spirituality is implicated in both findings. Most interventions intended to reduce exposure to environmental risk and to enable effective and sustainable adaptation to climate change in the Pacific Islands region have failed to acknowledge influences on decision making of spirituality and connectedness to Nature. Messages that stress environmental conservation and stewardship, particularly if communicated within familiar and respected religious contexts, are likely to be more successful than secular ones

    Condition Assessment and Analysis of Bearing of Doubly Fed Wind Turbines Using Machine Learning Technique

    Get PDF
    Condition monitoring of wind turbines is progressively increasing to maintain the continuity of clean energy supply to power grids. This issue is of great importance since it prevents wind turbines from failing and overheating, as most wind turbines with doubly fed induction generators (DFIG) are overheated due to faults in generator bearings. Bearing fault detection has become a main topic targeting the optimum operation, unscheduled downtime, and maintenance cost of turbine generators. Wind turbines are equipped with condition monitoring devices. However, effective and reliable fault detection still faces significant difficulties. As the majority of health monitoring techniques are primarily focused on a single operating condition, they are unable to effectively determine the health condition of turbines, which results in unwanted downtimes. New and reliable strategies for data analysis were incorporated into this research, given the large amount and variety of data. The development of a new model of the temperature of the DFIG bearing versus wind speed to identify false alarms is the key innovation of this work. This research aims to analyze the parameters for condition monitoring of DFIG bearings using SCADA data for k-means clustering training. The variables of k are obtained by the elbow method that revealed three classes of k (k = 0, 1, and 2). Box plot visualization is used to quantify data points. The average rotation speed and average temperature measurement of the DFIG bearings are found to be primary indicators to characterize normal or irregular operating conditions. In order to evaluate the performance of the clustering model, an analysis of the assessment indices is also executed. The ultimate goal of the study is to be able to use SCADA-recorded data to provide advance warning of failures or performance issues

    The Body Dances: Carnival Dance and Organization

    Get PDF
    Building on the work of Pierre Bourdieu and Maurice Merleau-Ponty we seek to open up traditional categories of thought surrounding the relation `body-organization' and elicit a thought experiment: What happens if we move the body from the periphery to the centre? We pass the interlocking theoretical concepts of object-body/subject-body and habitus through the theoretically constructed empirical case of `carnival dance' in order to re-evaluate such key organizational concepts as knowledge and learning. In doing so, we connect with an emerging body of literature on `sensible knowledge'; knowledge that is produced and preserved within bodily practices. The investigation of habitual appropriation in carnival dance also allows us to make links between repetition and experimentation, and reflect on the mechanism through which the principles of social organization, whilst internalized and experienced as natural, are embodied so that humans are capable of spontaneously generating an infinite array of appropriate actions. This perspective on social and organizational life, where change and permanence are intricately interwoven, contrasts sharply with the dominant view in organization studies which juxtaposes change/ creativity and stability

    Measurement precision and evaluation of the diameter profiles of single wool fibers

    Full text link
    A recent model of the Single Fiber Analyzer 3001 (SIFAN3001) was firstly employed to obtain the single wool fiber diameter profiles (SfFDPs) at multiple orientations. The results showed that using SIFAN3001 to measure fiber diameter at four orientations for 50 single fibers randomly sub-sampled from each mid-side sample can produce average fiber diameter profiles (AS fFDPs) of fibers within staples. Within the testing regime used, the precision estimates for the total samples were &plusmn;1.3 &micro;m for the mean fiber diameter of staples and 1.4 &micro;m for the average fiber diameter of the AS fFDPs at each scanned step in the diameter profile. The mean diameter ratio (ellipticity) obtained from the four orientations was 1.08&plusmn;0.01, confirming that the Merino wool fibers under review were elliptical rather than circular. The elliptical morphology of wool fibers and the precision of the fiber diameter measurement at each point along a fiber will be considered in the development of a mechanical model of Staple Strength testing.<br /

    The Incremental Cooperative Design of Preventive Healthcare Networks

    Get PDF
    This document is the Accepted Manuscript version of the following article: Soheil Davari, 'The incremental cooperative design of preventive healthcare networks', Annals of Operations Research, first published online 27 June 2017. Under embargo. Embargo end date: 27 June 2018. The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-017-2569-1.In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in a way that the uptake of services is maximised given certain constraints such as congestion considerations. We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities are added incrementally to the network (one at a time), contributing to the service levels. We first develop a general non-linear model of this problem and then present a method to make it linear. As the problem is of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it. In order to gain insight into the problem, the computational studies were performed with randomly generated instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors not more than 1.54%.Peer reviewe
    • …
    corecore