35,338 research outputs found
Pion Interferometry for a Granular Source of Quark-Gluon Plasma Droplets
We examine the two-pion interferometry for a granular source of quark-gluon
plasma droplets. The evolution of the droplets is described by relativistic
hydrodynamics with an equation of state suggested by lattice gauge results.
Pions are assumed to be emitted thermally from the droplets at the freeze-out
configuration characterized by a freeze-out temperature . We find that the
HBT radius decreases if the initial size of the droplets decreases.
On the other hand, depends on the droplet spatial distribution and
is relatively independent of the droplet size. It increases with an increase in
the width of the spatial distribution and the collective-expansion velocity of
the droplets. As a result, the value of can lie close to
for a granular quark-gluon plasma source. The granular model of the emitting
source may provide an explanation to the RHIC HBT puzzle and may lead to a new
insight into the dynamics of the quark-gluon plasma phase transition.Comment: 5 pages, 4 figure
Effective hadronic Lagrangian for charm mesons
An effective hadronic Lagrangian including the charm mesons is introduced to
study their interactions in hadronic matter. Using coupling constants that are
determined either empirically or by the SU(4) symmetry, we have evaluated the
absorption cross sections of and the scattering cross sections of
and by and mesons.Comment: 5 pages, 4 eps figures, presented at Strangeness 2000, Berkeley. Uses
iopart.cl
Minimizing Unsatisfaction in Colourful Neighbourhoods
Colouring sparse graphs under various restrictions is a theoretical problem
of significant practical relevance. Here we consider the problem of maximizing
the number of different colours available at the nodes and their
neighbourhoods, given a predetermined number of colours. In the analytical
framework of a tree approximation, carried out at both zero and finite
temperatures, solutions obtained by population dynamics give rise to estimates
of the threshold connectivity for the incomplete to complete transition, which
are consistent with those of existing algorithms. The nature of the transition
as well as the validity of the tree approximation are investigated.Comment: 28 pages, 12 figures, substantially revised with additional
explanatio
Possible and Molecular states in a chiral quark model
We perform a systematic study of the bound state problem of and
systems by using effective interaction in our chiral quark model.
Our results show that both the interactions of and states
are attractive, which consequently result in
and bound states.Comment: arXiv admin note: substantial text overlap with arXiv:1204.395
Correlation of internal representations in feed-forward neural networks
Feed-forward multilayer neural networks implementing random input-output
mappings develop characteristic correlations between the activity of their
hidden nodes which are important for the understanding of the storage and
generalization performance of the network. It is shown how these correlations
can be calculated from the joint probability distribution of the aligning
fields at the hidden units for arbitrary decoder function between hidden layer
and output. Explicit results are given for the parity-, and-, and
committee-machines with arbitrary number of hidden nodes near saturation.Comment: 6 pages, latex, 1 figur
Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory
We have measured the muon flux and production rate of muon-induced neutrons
at a depth of 611 m water equivalent. Our apparatus comprises three layers of
crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray
muons and 760 L of gadolinium-doped liquid scintillator for producing and
detecting neutrons. The vertical muon intensity was measured to be cmssr. The yield of
muon-induced neutrons in the liquid scintillator was determined to be
neutrons/(gcm). A fit to the recently measured neutron
yields at different depths gave a mean muon energy dependence of for liquid-scintillator targets.Comment: 14 pages, 17 figures, 3 table
Extremal Optimization of Graph Partitioning at the Percolation Threshold
The benefits of a recently proposed method to approximate hard optimization
problems are demonstrated on the graph partitioning problem. The performance of
this new method, called Extremal Optimization, is compared to Simulated
Annealing in extensive numerical simulations. While generally a complex
(NP-hard) problem, the optimization of the graph partitions is particularly
difficult for sparse graphs with average connectivities near the percolation
threshold. At this threshold, the relative error of Simulated Annealing for
large graphs is found to diverge relative to Extremal Optimization at equalized
runtime. On the other hand, Extremal Optimization, based on the extremal
dynamics of self-organized critical systems, reproduces known results about
optimal partitions at this critical point quite well.Comment: 7 pages, RevTex, 9 ps-figures included, as to appear in Journal of
Physics
Anomalous Optoelectronic Properties of Chiral Carbon Nanorings...and One Ring to Rule Them All
Carbon nanorings are hoop-shaped, {\pi}-conjugated macrocycles which form the
fundamental annular segments of single-walled carbon nanotubes (SWNTs). In a
very recent report, the structures of chiral carbon nanorings (which may serve
as chemical templates for synthesizing chiral nanotubes) were experimentally
synthesized and characterized for the first time. Here, in our communication,
we show that the excited-state properties of these unique chiral nanorings
exhibit anomalous and extremely interesting optoelectronic properties, with
excitation energies growing larger as a function of size (in contradiction with
typical quantum confinement effects). While the first electronic excitation in
armchair nanorings is forbidden with a weak oscillator strength, we find that
the same excitation in chiral nanorings is allowed due to a strong geometric
symmetry breaking. Most importantly, among all the possible nanorings
synthesized in this fashion, we show that only one ring, corresponding to a
SWNT with chiral indices (n+3,n+1), is extremely special with large
photoinduced transitions that are most readily observable in spectroscopic
experiments.Comment: Accepted by the Journal of Physical Chemistry Letter
Dynamics of Neural Networks with Continuous Attractors
We investigate the dynamics of continuous attractor neural networks (CANNs).
Due to the translational invariance of their neuronal interactions, CANNs can
hold a continuous family of stationary states. We systematically explore how
their neutral stability facilitates the tracking performance of a CANN, which
is believed to have wide applications in brain functions. We develop a
perturbative approach that utilizes the dominant movement of the network
stationary states in the state space. We quantify the distortions of the bump
shape during tracking, and study their effects on the tracking performance.
Results are obtained on the maximum speed for a moving stimulus to be
trackable, and the reaction time to catch up an abrupt change in stimulus.Comment: 6 pages, 7 figures with 4 caption
- …