2,381 research outputs found

    Finite-Size Effects in Lattice QCD with Dynamical Wilson Fermions

    Get PDF
    As computing resources are limited, choosing the parameters for a full Lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming to push unquenched simulations with the Wilson action towards the computationally expensive regime of small quark masses we address the question whether one can possibly save computing time by extrapolating results from small lattices to the infinite volume, prior to the usual chiral and continuum extrapolations. In the present work the systematic volume dependence of simulated pion and nucleon masses is investigated and compared with a long-standing analytic formula by Luescher and with results from Chiral Perturbation Theory. We analyze data from Hybrid Monte Carlo simulations with the standard (unimproved) two-flavor Wilson action at two different lattice spacings of a=0.08fm and 0.13fm. The quark masses considered correspond to approximately 85 and 50% (at the smaller a) and 36% (at the larger a) of the strange quark mass. At each quark mass we study at least three different lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08fm).Comment: 21 pages, 20 figures, REVTeX 4; v2: caption of Fig.7 corrected, one reference adde

    Compact QED under scrutiny: it's first order

    Get PDF
    We report new results from our finite size scaling analysis of 4d compact pure U(1) gauge theory with Wilson action. Investigating several cumulants of the plaquette energy within the Borgs-Kotecky finite size scaling scheme we find strong evidence for a first-order phase transition and present a high precision value for the critical coupling in the thermodynamic limit.Comment: Lattice2002(Spin

    Accelerating Wilson Fermion Matrix Inversions by Means of the Stabilized Biconjugate Gradient Algorithm

    Get PDF
    The stabilized biconjugate gradient algorithm BiCGStab recently presented by van der Vorst is applied to the inversion of the lattice fermion operator in the Wilson formulation of lattice Quantum Chromodynamics. Its computational efficiency is tested in a comparative study against the conjugate gradient and minimal residual methods. Both for quenched gauge configurations at beta= 6.0 and gauge configurations with dynamical fermions at beta=5.4, we find BiCGStab to be superior to the other methods. BiCGStab turns out to be particularly useful in the chiral regime of small quark masses.Comment: 25 pages, WUB 94-1

    Volume dependence of light hadron masses in full lattice QCD

    Full text link
    The aim of the GRAL project is to simulate full QCD with standard Wilson fermions at light quark masses on small to medium-sized lattices and to obtain infinite-volume results by extrapolation. In order to establish the functional form of the volume dependence we study systematically the finite-size effects in the light hadron spectrum. We give an update on the status of the GRAL project and show that our simulation data for the light hadron masses depend exponentially on the lattice size.Comment: 3 pages, 1 figure, Lattice2003(spectrum

    Light Quark Masses with Nf=2N_f=2 Wilson Fermions

    Get PDF
    We present new data on the mass of the light and strange quarks from SESAM/Tχ\chiL. The results were obtained on lattice-volumes of 163×3216^3\times 32 and 243×4024^3\times 40 points, with the possibility to investigate finite-size effects. Since the SESAM/Tχ\chiL ensembles at β=5.6\beta=5.6 have been complemented by configurations with β=5.5\beta=5.5, moreover, we are now able to attempt the continuum extrapolation (CE) of the quark masses with standard Wilson fermions.Comment: Lattice2001(spectrum), minor correction

    Decorrelating Topology with HMC

    Full text link
    The investigation of the decorrelation efficiency of the HMC algorithm with respect to vacuum topology is a prerequisite for trustworthy full QCD simulations, in particular for the computation of topology sensitive quantities. We demonstrate that for mpi/mrho ratios <= 0.69 sufficient tunneling between the topological sectors can be achieved, for two flavours of dynamical Wilson fermions close to the scaling region beta=5.6. Our results are based on time series of length 5000 trajectories.Comment: change of comments: LATTICE98(confine

    Proposal for an interference experiment to test the applicability of quantum theory to event-based processes

    Full text link
    We analyze a single-particle Mach-Zehnder interferometer experiment in which the path length of one arm may change (randomly or systematically) according to the value of an external two-valued variable xx, for each passage of a particle through the interferometer. Quantum theory predicts an interference pattern that is independent of the sequence of the values of xx. On the other hand, corpuscular models that reproduce the results of quantum optics experiments carried out up to this date show a reduced visibility and a shift of the interference pattern depending on the details of the sequence of the values of xx. The proposed experiment will show that: (1) it can be described by quantum theory, and thus not by the current corpuscular models, or (2) it cannot be described by quantum theory but can be described by the corpuscular models or variations thereof, or (3) it can neither be described by quantum theory nor by corpuscular models. Therefore, the proposed experiment can be used to determine to what extent quantum theory provides a description of observed events beyond the usual statistical level.Comment: Accepted for publication in J. Phys. Soc. Jp

    A High Precision Study of the QQ(bar) Potential from Wilson Loops in the Regime of String Breaking

    Full text link
    For lattice QCD with two sea quark flavours we compute the static quark antiquark potential V(R) in the regime where string breaking is expected. In order to increase statistics, we make full use of the lattice information by including all lattice vectors R to any possible lattice separation in the infrared regime. The corresponding paths between the lattice points are constructed by means of a generalized Bresenham algorithm as known from computer graphics. As a results we achieve a determination of the unquenched potential in the range .8 to 1.5 fm with hitherto unknown precision. Furthermore, we demonstrate some error reducing methods for the evaluation of the transition matrix element between two- and four-quark states.Comment: 6 pages, 7 figure
    corecore