673 research outputs found

    A Bayesian approach to the estimation of maps between riemannian manifolds

    Full text link
    Let \Theta be a smooth compact oriented manifold without boundary, embedded in a euclidean space and let \gamma be a smooth map \Theta into a riemannian manifold \Lambda. An unknown state \theta \in \Theta is observed via X=\theta+\epsilon \xi where \epsilon>0 is a small parameter and \xi is a white Gaussian noise. For a given smooth prior on \Theta and smooth estimator g of the map \gamma we derive a second-order asymptotic expansion for the related Bayesian risk. The calculation involves the geometry of the underlying spaces \Theta and \Lambda, in particular, the integration-by-parts formula. Using this result, a second-order minimax estimator of \gamma is found based on the modern theory of harmonic maps and hypo-elliptic differential operators.Comment: 20 pages, no figures published version includes correction to eq.s 31, 41, 4

    On adaptive estimation using the sup-norm losses

    Get PDF
    We consider the problem of recovering smooth functions from noisy data using the supnorm as the quality criterion Starting with a natural projection estimator we show a datadriven procedure to be adaptive asymptotically minima

    Minimax Estimation of Nonregular Parameters and Discontinuity in Minimax Risk

    Full text link
    When a parameter of interest is nondifferentiable in the probability, the existing theory of semiparametric efficient estimation is not applicable, as it does not have an influence function. Song (2014) recently developed a local asymptotic minimax estimation theory for a parameter that is a nondifferentiable transform of a regular parameter, where the nondifferentiable transform is a composite map of a continuous piecewise linear map with a single kink point and a translation-scale equivariant map. The contribution of this paper is two fold. First, this paper extends the local asymptotic minimax theory to nondifferentiable transforms that are a composite map of a Lipschitz continuous map having a finite set of nondifferentiability points and a translation-scale equivariant map. Second, this paper investigates the discontinuity of the local asymptotic minimax risk in the true probability and shows that the proposed estimator remains to be optimal even when the risk is locally robustified not only over the scores at the true probability, but also over the true probability itself. However, the local robustification does not resolve the issue of discontinuity in the local asymptotic minimax risk

    Coherent optical control of correlation waves of spins in semiconductors

    Full text link
    We calculate the dynamical fluctuation spectrum of electronic spins in a semiconductor under a steady-state illumination by light containing polarization squeezing correlations. Taking into account quasi-particle lifetime and spin relaxation for this non-equilibrium situation we consider up to fourth order optical effects which are sensitive to the squeezing phases. We demonstrate the possibility to control the spin fluctuations by optically modulating these phases as a function of frequency, leading to a non-Lorentzian spectrum which is very different from the thermal equilibrium fluctuations in n-doped semiconductors. Specifically, in the time-domain spin-spin correlation can exhibit time delays and sign flips originating from the phase modulations and correlations of polarizations, respectively. For higher light intensity we expect a regime where the squeezing correlations will dominate the spectrum.Comment: 17 pages, 8 figure

    Limitation of energy deposition in classical N body dynamics

    Full text link
    Energy transfers in collisions between classical clusters are studied with Classical N Body Dynamics calculations for different entrance channels. It is shown that the energy per particle transferred to thermalised classical clusters does not exceed the energy of the least bound particle in the cluster in its ``ground state''. This limitation is observed during the whole time of the collision, except for the heaviest system.Comment: 13 pages, 15 figures, 1 tabl

    Coulomb Drag of Edge Excitations in the Chern-Simons Theory of the Fractional Quantum Hall Effect

    Full text link
    Long range Coulomb interaction between the edges of a Hall bar changes the nature of the gapless edge excitations. Instead of independent modes propagating in opposite directions on each edge as expected for a short range interaction one finds elementary excitations living simultaneously on both edges, i.e. composed of correlated density waves propagating in the same direction on opposite edges. We discuss the microscopic features of this Coulomb drag of excitations in the fractional quantum Hall regime within the framework of the bosonic Chern-Simons Landau-Ginzburg theory. The dispersion law of these novel excitations is non linear and depends on the distance between the edges as well as on the current that flows through the sample. The latter dependence indicates a possibility of parametric excitation of these modes. The bulk distributions of the density and currents of the edge excitations differ significantly for short and long range interactions.Comment: 11 pages, REVTEX, 2 uuencoded postscript figure

    Static Polycode Text Modeling Using Network Analysis (Demotivator Dedicated to Problems of Self-Isolation)

    Get PDF
    The features of modeling a graphic-verbal polycode text, including a static image and an accompanying inscription, are considered. The study was conducted on the example of a demotivator dedicated to the problems of mass self-isolation at the very beginning of the pandemic and the introduction of restrictive measures. Significant semantic components, represented as part of only the iconic component, only the verbal component, and also as part of the verbal and iconic components at the same time are established. The semantic relations between the selected semantic components are revealed, the types of these links, revealing the different nature of their correlation are determined. On the basis of the data obtained, a network model of the considered static polycode text in the form of a semantic network was built. Cases of semantic components correlation are considered, reflecting the generally objective aspects of the situation and unrealistic ideas based on irony and hyperbole to create a comic effect. Based on quantitative analysis, representative semantic relations were established: “partitive”, “localization (in)”, “attributive”, “subject-object”. Non-representative semantic relations between the semantic components in the analyzed polycode text are revealed: “coincidence”, “localization (on)”, “temporal”, “subject-instrument”, “subject-result”

    Adaptive response and enlargement of dynamic range

    Full text link
    Many membrane channels and receptors exhibit adaptive, or desensitized, response to a strong sustained input stimulus, often supported by protein activity-dependent inactivation. Adaptive response is thought to be related to various cellular functions such as homeostasis and enlargement of dynamic range by background compensation. Here we study the quantitative relation between adaptive response and background compensation within a modeling framework. We show that any particular type of adaptive response is neither sufficient nor necessary for adaptive enlargement of dynamic range. In particular a precise adaptive response, where system activity is maintained at a constant level at steady state, does not ensure a large dynamic range neither in input signal nor in system output. A general mechanism for input dynamic range enlargement can come about from the activity-dependent modulation of protein responsiveness by multiple biochemical modification, regardless of the type of adaptive response it induces. Therefore hierarchical biochemical processes such as methylation and phosphorylation are natural candidates to induce this property in signaling systems.Comment: Corrected typos, minor text revision

    Anatomy of nuclear shape transition in the relativistic mean field theory

    Get PDF
    A detailed microscopic study of the temperature dependence of the shapes of some rare-earth nuclei is made in the relativistic mean field theory. Analyses of the thermal evolution of the single-particle orbitals and their occupancies leading to the collapse of the deformation are presented. The role of the non-linear σ\sigma-field on the shape transition in different nuclei is also investigated; in its absence the shape transition is found to be sharper.Comment: REVTEX file (13pages), 12 figures, Phys. Rev. C(in press), \documentstyle[aps,preprint]{revtex

    Qubit Coherent Control with Squeezed Light Fields

    Full text link
    We study the use of squeezed light for qubit coherent control and compare it with the coherent state control field case. We calculate the entanglement between a short pulse of resonant squeezed light and a two-level atom in free space and the resulting operation error. We find that the squeezing phase, the phase of the light field and the atomic superposition phase, all determine whether atom-pulse mode entanglement and the gate error are enhanced or suppressed. However, when averaged over all possible qubit initial states, the gate error would not decrease by a practicably useful amount and would in fact increase in most cases. We discuss the possibility of measuring the increased gate error as a signature of the enhancement of entanglement by squeezing.Comment: 12 pages, 6 figure
    corecore