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Abstract

We consider the problem of recovering smooth functions from noisy data� using

the sup�norm as the quality criterion� Starting with a natural projection estimator�

we show a data�driven procedure to be adaptive asymptotically minimax�

� Introduction

In this paper we study the problem of recovering an unknown function f�t�� t � ��� ���
from noisy data

dY �t� � f�t�dt � �db�t�� ���

where b�t� is a standard Wiener process	 As the quality criterion of an estimator we will
use the sup
norm

kgk� � sup
t������

jg�t�j�

The optimality of an estimator can be assessed in several ways	 Three main ap

proaches have greatly in�uenced the development of modern theoretical statistics	 With
the minimax approach� one assumes that the unknown function f�t� belongs to a given
functional class F and that the performance of an estimator ef�t� Y � is characterized by
its maximum risk

R� ef�F� � sup
f�F

Efk ef��� Y �� fk�

where k�k is a norm	 The goal is to evaluate the minimax risk R�F� � inf ef R� ef �F� and

to construct an estimator f��t� Y � that approaches this quantity	 Usually one tries to
nd the so
called asymptotically minimax estimator f� such that

lim
���

R�f��F�

R�F�
� ��

The solutions are known for a selection of functional classes F 	 Pinsker ������ solved
the problem using L�
losses and ellipsoidal restrictions	 In the case of the H�older classes

�
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F � H���L�� the solution for the sup
norm was obtained by Korostelev ������ and
Donoho ������ who demonstrated that an asymptotically minimax estimator f� can be
found among the kernel smoothers	 Another example is the class F � A��� L� of functions
analytic inside the strip around the real axis in the complex plain of size �� �Golubev�
Tsybakov and Levit �������	 The asymptotically minimax estimator was again a �spatial�
kernel smoother which at the same time could be viewed as a projection estimator in the
frequency domain	

In general� the asymptotically minimax estimators depend on the functional classes F
at hand	 Thus in the case of the H�older classes both the optimal bandwidth and the shape
of the optimal kernel depend on the parameters ���L�	 In the case of analytic functions
the asymptotically minimax estimator depends on the parameter � 	 Since in practice
precise information about the functional classes F is hardly ever available� applications
of the �purely� minimax approach are very restricted	

To overcome this di�culty� a popular model selection approach is often used� associ

ated with so
called �oracles�	 In contrast to the minimax approach� where the functional
class is assumed to be given and no restrictions are imposed on the family of estima

tors� now the class of estimators� say E � ffh�x� Y �� h � Hg� is chosen beforehand	 For
example� E may be the family of kernel estimators

fh�x� Y � �
�

h

Z �

�
K
�
x� t

h

�
dY �t��

where the bandwidth parameter h describes the family	 The objective is to choose the
�best� estimator within the family E� which is of the same quality as the �oracle estima

tor� that achieves inf ef�E Efk ef � fk	 Substantial progress in this area has been achieved

recently in the case of the L�
losses� following the pioneering papers by Akaike ������
and Mallows ������	 For the state of the art in this area see Nemirovskii ������ and
Barron� Birg�e and Massart ������	

The third approach can be seen as intermediate between the model selection and the
minimax approach	 It is often called the adaptive or functional scale approach	 Here we
are dealing with an appropriate family of functional classes F�� � � �	 We will call an
estimator f� adaptive asymptotically minimax if for any � � �

lim
���

R�f��F��

R�F��
� ��

The adaptive approach has an obvious advantage over the minimax approach� the adap

tive minimax estimator no longer depends on a particular functional class F�	

It is perhaps natural that in constructing such estimators� one concentrates rst of all
on the functional scales for which the exact asymptotics of the minimax risk R�F�� are
known	 Even for such scales� nding the adaptive asymptotically minimax estimators
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may be quite challenging	 Efroimovich and Pinsker ������ obtained such estimators
using L�
losses and Sobolev classes	 A di�erent approach to this problem was proposed
by Golubev and Nussbaum ������	 A typical trait of such models is that the loss function
k �f � fk has an asymptotically degenerate distribution	

However� adaptive minimax estimators do not always exist	 For instance� they do not
exist when the unknown function belongs to the H�older scale H���L�� � � ��� ��� L � ��
and the sup
norm losses are used �Lepski �������	 This can be explained intuitively from
the fact that for any given ���L� both the kernel and the bandwidth of the asymptotically
minimax estimator are derived from a strict balance between the bias and the variance
�Korostelev ������� Donoho �������	 One therefore has little freedom in constructing
such estimators� so an asymptotically minimax estimator for one H�older class cannot at
the same time be optimal for any other H�older class	

In situations where the adaptive asymptotically minimax estimators do not exist�
one can study both the optimal rates of convergence and the exact asymptotics of the
best adaptive estimators	 A great deal of work has been done on establishing the optimal
rates of convergence of adaptive estimators �Lepski �������	 In some cases asymptotically
optimal adaptive estimators have been found� even in situations where explicit minimax
estimators are still not known �see for instance Lepski and Spokoiny ������� Tsybakov
�������	 Optimal adaptive pointwise estimators for analytic functions have been studied
by Lepski and Levit ������ �����	 A particular feature of the functional classes studied
in the last two papers is that in the case of known functional classes the asymptotically
minimax estimators were asymptotically unbiased	

The problem studied in the present paper bears both the hallmarks of the functional
scales for which adaptive minimax estimators have been constructed so far	 The variance
of the estimators we are studying dominates their bias and in addition the sup
norm losses
k �f � fk� exhibit degenerate asymptotic behavior	

Our functional scales will be introduced in terms of the Fourier coe�cients� with re

gard to orthonormal bases in L���� �� that possess some additional properties	 Examples
of such functional scales include harmonic polynomials and periodic analytic functions	
The goal of the present paper is to construct adaptive asymptotically minimax estimators
for the scales of such functional classes� with respect to the sup
norm	 To achieve this
objective we start with the projection
type estimators	 By obvious analogy with band
limitation� we will refer to the number of terms in a projection estimator as its bandwidth	

� Main results

In this paper we study projection estimators with data
driven bandwidths	 To specify
such estimators one needs� rst of all� a basis	 Let �k�x� be an orthonormal basis in the
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Hilbert space L���� �� equipped with the inner product

	f� g� �
Z �

�
f�t�g�t� dt�

Any function f � L���� �� can then be expanded into the Fourier series

f�t� �
�X
k��

	f��k��k�t��

A natural way to recover an unknown function f�t� from the noisy data ��� is to use the
projection estimator

bfW �t� Y � �
WX
k��

	 �Y � �k��k�t�� ���

where

	 �Y � �k��
Z �

�
�k�t� dY �t��

The number W of terms in ��� will be called the bandwidth of the projection estimator	

If W is a non
integer� we will adopt the following convention�
PW�

W�
�
PbW�c
dW�e	

Since the performance of bfW �t� Y � strongly depends on W � choosing the bandwidth
is one of the primary statistical problems	 A projection estimator can easily be split into
the stochastic or variance term and the non
random part or bias	 Accordingly� the risk
of bfW �t� Y � is controlled by

Ek bfW � fk� � �E sup
t������

���� WX
k��


k�k�t�
����� sup

t������

���� �X
k�W��

	f��k��k�t�
����� ���

where 
k are i	i	d	 standard normal N ��� ��	
To evaluate the variance term� we will impose some additional conditions on the basis

�k�x�	 First� we will assume that the functions �k�x� are bounded uniformly in k and
x� supx�������k j�k�x�j 	 �	 In addition� some properties of �k�t� will be formulated in
terms of the �incomplete reproducing kernel 

KN
r �t� s� �

�

N

X
l��rN�N �

�l�t��l�s�� r� t� s � ��� ���

We will assume that for any r � ��� �� and N � � the kernel KN
r �t� s� satises the

following conditions�

� for any � � � uniformly in t � �N���� � ��N���� �

KN
r �t� t� � �� r � o���! ���
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� for any � � � and some positive constant C uniformly in t� s � �N����� ��N���� ����KN
r �t� s�

��� � C

N j�t� s�j ! �"�

� uniformly in s � ��� �� ������KN
r �t� s�

�t

�����
t�s

� o�N�! ���

� uniformly in s � ��� �� �������KN
r �t� s�

�s�t

�����
t�s

� O�N��� ���

Later on we will need the following result� which can be derived e	g	 from Cram�er
and Leadbetter ������� Ch	 ��	"� p	 ��� or Lifshits ����"�� Ch	 ��� p	 ���	

Lemma � Let the assumptions ����� be satis�ed and 
k be i�i�d� N ��� ��� Then there
exists a constant C such that all N and r � ��� ��

P

�
�q

N��� r�
sup
t������

���� NX
k�Nr


k�k�t�
���� � x

�
� CN��� r� exp��x����

Let D�x� �
p

�x log x	 Using the lemma� the variance term of the projection estimator
can be bounded by

E sup
t������

���� WX
k��


k�k�t�
���� � �� � o����D�W �� W ��� ���

In order to control the bias� we assume that the unknown function f�x� belongs to
the scale of functional classes

FW �
�
f �

�X
k�W��

j	f��k�j � ���W �D�W �
�
� ���

Here ��x� � � as x � � is an arbitrary xed function� which however is typically
unknown to the statistician	 The parameter W � also unknown� e�ectively determines the
dimensionality of the statistical problem	 One of the typical features of non
parametric
problems is increasing dimensionality	 Therefore we will assume that W �Wmin for some
Wmin ��	

Now� by using ���� ��� and ��� the risk of the estimator bfW �t� Y �� is bounded� uniformly
over FW � by

sup
f�FW

Ek bfW � fk� � �� � o�����D�W �� Wmin ��� ����



�

It is not di�cult to show �cf	 section "� that the projection estimator ��� is asymptotically
minimax with respect to the corresponding class FW � i	e	

infbf sup
f�FW

Ek bf � fk� � �� � o�����D�W �� Wmin ��� ����

where inf is taken over all possible estimators	
Remark �� Many di�erent orthonormal systems satisfy the above conditions ��� #

���	 In a sense� they are all close to the classical trigonometric bases� for which these
conditions can be veried by simple algebra	 One such system that is often used consists
of the eigenfunctions of the following boundary value problem �see e	g	 Dunford and
Schwartz ������� Sect	 XIX	��

����m
d�m

dt�m
�k�t�� �k�k�t� � ��

�
�l	
k ��� � �

�l	
k ���� l � m� � � � � �m� ��

In particular� one obtains for m � � the well
known cosine basis ���t� � �� �k�t� �p
� cos��kt�	
Remark �� At rst sight� our denition of the functional classes FW may seem some


what articial	 To shed some additional light on this denition� consider the following
two examples	 Assume rst that ��x� 	 �	 In this case FW is the linear space spanned
by functions f���t�� � � � � �W �t�g	 For a less trivial example� assume that f � A��� L��
where

A��� L� �
�
f �

�X
k��

	f��k�
� exp���k� � L�

�
�

and �k�t� is the ordinary trigonometric basis	 By the Cauchy
Schwartz inequality

�X
k�W

j	f��k�j � L exp���W ���� exp���� ������

and� therefore� A��� L� 
 FW � with W � ��� log�L�� and

��W � � D���W ��� � exp���� ������

Note that our assumption W � Wmin is then equivalent to the following a priori re

strictions � � �max� L � Lmin� with some �max 	 � and Lmin � �	 In this case
Wmin � ���max log�Lmin�� �� when �� �	

The above
mentioned optimality property of the estimator $fW referred to the situation
where the classes FW were known	 We now turn to the situation where W is unknown
except for W � Wmin	 Our adaptive estimator in this case will be constructed as follows	
Let

wk � Wmin�� � ��k� k � �� ���� log�Wmin�
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be an exponential grid� where � � � is a su�ciently small number	 Consider the family
of projection estimators

bfwk �t� Y � �
wkX
l��

	 �Y � �l��l�t�� k � �� ���� log�Wmin��

Our goal is to select the �best� estimator within this family	 To achieve this objective we
use the method proposed by Lepski ������� which consists of comparing the di�erences
k bfwk � bfwlk�	 When f � FW and wl � wk � W � both the biases of bfwk and bfwl will be
much smaller than �D�wl � wk� �cf	 ����	 Therefore by Lemma � the random variables
k bfwk � bfwlk� with a high probability do not exceed �� � ���D�wl � wk�	 We therefore
arrive at the following �estimator� of W

cW � min
n
wk � k bfwk � bfwlk� � �� � ���D�wl � wk� for all l � k

o
�

The adaptive estimator is then simply

f��t� Y � � bf bW �t� Y ��

The main di�culty in analyzing this estimator is connected with evaluating part of
its risk corresponding to the event cW 	 W 	 This di�culty is caused by� rst� the use of
the sup
norm and� second� the need to demonstrate that no extra losses are involved in
having to estimate the unknown bandwidth W or� in other words� that one doesn t have
to pay a price for the adaptation	 The following theorem represents the main result of
the paper	

Theorem � For any C� � � uniformly in W � �Wmin� C�Wmin� and � as Wmin ��
R�f��FW ���D�W �� � � � O����

Since � is arbitrary and can be chosen slowly converging to zero as Wmin ��� one can
conclude that� according to ����� the estimator f� is adaptive asymptotically minimax	
Note that this estimator does not depend on the constant C� appearing in the Theorem	

� Auxiliary results

The following result will play a key role in the proof of Theorem �	 Consider two inde

pendent Gaussian random processes

���t� �
�p
N

�NX
i�N��


i�i�t�� ���t� �
�p
N

NX
i��


i�i�t��

where � � � and 
i are i	i	d	 N ��� ��	
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Lemma � For any su�ciently small � � �	 uniformly in g � R
� and T 
 ��� �� as

N ��
P

�
sup
t�T

jg � ���t�j � A�
� �N�

�
P

�
sup
t�T

jg � ���t�j � A�
� �N�

�
� o���� ����

where A�
� �N� � �� � ��

q
��� � �� logN 	 A�

� �N� � ��� ��
p

�� logN�

Proof� Without loss of generality one can assume that g � � and that the set T is
closed since the functions ���t�� ���t� are continuous	 It is clear that for any s � T

P

�
sup
t�T

jg � ���t�j � A�
� �N�

�
� P

�
g � ���s� � A�

� �N�
�
�

Since the functions ��
l �t� are uniformly bounded� E����t� � C for some C � �� Therefore

the right
hand side of the last inequality tends to � if

g � �� � ���
q

��� � �� logN�

The case
� � g � �� � ���

q
��� � �� logN� ����

has to be considered next	 Dene the points ft�� t�� t�� � � � � tMg in T as follows

t� � minft � T � t � �g� � � � � tk�� � minft � T � t � tk � N���g� � � � �
where � � � is a su�ciently small number	 Obviously� ft�� t�� t�� � � � � tMg is an N���
net
in T 	 Let Tk � ft � ��� �� � jt� tkj � N����g and

T �
M���
k��

Tk�

We have

P

�
sup
t�T

jg � ���t�j � A�
� �N�

�
� P

�
g � sup

k������M��
���tk� � A�

� �N�
�

� P

�
g � ���t�� � A�

� �N�
�

� P

�
g � ���tM� � A�

� �N�
�
�

Therefore

P

�
sup
t�T

jg � ���t�j � A�
� �N�

�
P

�
sup
t�T

jg � ���t�j � A�
� �N�

�
����

� P

�
g � sup

k������M��
���tk� � A�

� �N�
�
P

�
g � sup

t�T
j���t�j � A�

� �N�
�

� P

�
g � ���t�� � A�

� �N�
�
P

�
g � sup

t�T�
j���t�j � A�

� �N�
�

� P

�
g � ���tM� � A�

� �N�
�
P

�
g � sup

t�TM
j���t�j � A�

� �N�
�
�
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The last two terms in the above inequality are small	 Indeed using ���� and Lemma �
one obtains

P

�
g � ���tM � � A�

� �N�
�
P

�
g � sup

t�TM
j���t�j � A�

� �N�
�

��"�

� P

�
sup
t�TM

j���t�j �
q

� logN �
p
��� � ���p�� ��� � ����

�
� o���

and similarly

P

�
g � ���t�� � A�

� �N�
�
P

�
g � sup

t�T�
j���t�j � A�

� �N�
�

� o���� ����

To bound the rst term on the right side of ����� we will approximate the process ���t�
on the set ft�� t�� � � � � tM��g by a sequence of independent Gaussian random variables	
Consider Gaussian vector �� where �k � ���tk�� k � �� � � � �M��	 Let B be the covariance
matrix of �	 One can represent � as � �

p
B
� where 
 is N ��� E�� the matrix

p
B is

positive semidenite and
p
B
p
B � B	 Therefore

� �
q

diagB
 � ��

where � � �
p
B �pdiagB�
 and the diagonal matrix diagB has the entries �diagB�kk

� Bkk	 To evaluate E ��k � the following inequality can easily be checked

�
p
B �

q
diagB��

p
B �

q
diagB�T

� �diagB������B � diagB��B � diagB�T �diagB������

It now follows from �"� that

E ��k � C
MX

j���j ��k
B�
jk �

C

N�

MX
j���j ��k

�

sin� ��tj � tk�

� CN���
N���X

j���j ��k

�

�j � k��
� CN����

Therefore any x � �

P

�
max
k
j�kj � x

�
�X

k

P

�
j�kj � x

�
� N��� exp��Cx�N��� � o����

This together with ��� implies

P

�
g � sup

k�������M��
���tk� � A�

� �N�
�

����

� %M��
�

�� � ��
q

� logN � gp
�� �

�
� o����



��

where %�x� is the standard normal cdf	
Next using Lemma � we get

P

�
g � sup

t�T
j���t�j � A�

� �N�
�
� C�M � ��N� exp

	
��

�
�A�

� �N�� g��


� ����

We still have to check that the product of the terms appearing on the right
hand sides of
���� and ���� correspondingly tends to � as N ��	 Let us assume that the right
hand
of ���� is bounded away from �	 Using the asymptotics of %�x� for large x and ���� we
obtain

M � � � C
q

logN exp

���

�

�
�� � ��

q
� logN � gp

�� �

��
� �

With this the inequality ���� becomes

P

�
g � sup

t�T �
j���t�j � A�

� �N�
�

� CN�
q

logN exp

���

�

�
�� � ���

q
� logN � gp

� � �

��
�

� exp

�
��

�

�
�� � ��

q
�� logN � g

��
�
� CN�

q
logN

� exp

�
� logN

�
�� � ������ �� � x�� � ��� �����

�p
� � x

p
�� �

� � ��

� � �

��
��

�

where x � g�� logN������������������ � �� cf	 �����	 Thus to prove that the right
hand
side of the last inequality is small� we only have to check that

max
x������

&�x� 	 ��

where &�x� � ��� x��� �
p
�� x

p
�� ���	 Obviously &�x� � �����x� � � � � attains its

maximum over ��� �� at the boundary points when � � �	 Note that &��� � � � � 	 ��
and &��� � ��

p
��p�� ��� 	 �	 When � � �� both roots of &�x�

x��� �

p
�� �p

�� � � �
�

satisfy x��� � �	 Therefore &�x� 	 � for x � ��� ��	 This together with ���'��� proves
Lemma �	

Lemma � For any � � � uniformly in g�t� as N ��

P

�
sup
t������

jg�t� � ���t�j � A�
� �N�

�
P

�
sup
t������

jg�t� � ���t�j � A�
� �N�

�
� o����
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Proof� One may assume that

sup
t������

jg�t�j � �� � ���
q

��� � �� logN� ����

Indeed if

jg�t��j � �� � ���
q

���� �� logN

for some t� � ��� ��� then

P

�
sup
t������

jg�t� � ���t�j � A�
� �N�

�
� P

�
jg�t�� � ���t��j � A�

� �N�
�

� P

�
���t�� � ��

q
��� � �� logN

�
� ��

Now consider for a su�ciently small � � � the sequence gk �
p

� logNk�� with

jkj � �� � ���
q

�� � ��� �cf	 �����	 Let

Tk �
�
t � ��� �� � jgk � g�t�j � �

q
� logN�

�
�

Then

P

�
sup
t������

jg�t� � ���t�j � A�
� �N�

�
P

�
sup
t������

jg�t� � ���t�j � A�
� �N�

�

� X
jkj�p��	

P

�
sup
t�Tk

jgk � ���t�j � A�
� �N�

�

� P

�
sup
t������

jgk � ���t�j � A�
� �N��� � ��

�

� X
jkj�p��	

P

�
sup
t�Tk

jgk � ���t�j � A�
� �N��� � ��

�

� P

�
sup
t�Tk

jgk � ���t�j � A�
� �N���� ��

�
�

This together with Lemma � proves Lemma �	

� Proof of the Theorem

Let f � FW 	 Denote

W � minfwk � wk �Wg �� wk



��

an approximation of W by the the bandwidths nested in the exponential grid introduced
in Section �	 Let Wmax � wblog�Wmin	c � W ��	

min 	 We will split the risk of f� into two parts�

R� � Efkf� � fk��
ncW �W

o
� and R� � Efkf� � fk��

ncW � W
o
� ����

First let us show that R� is small	 Consider the following event

A � fY �t� � kf� � fk� � ��D�Wmax�g�

Now R� can be bounded as

R� � Efkf� � fk��
ncW � W

o
�

n
A
o

� ��D�Wmax�P
ncW � W

o
� ����

By the Cauchy
Schwartz inequality one obtains

Efkf� � fk��
ncW � W

o
�

n
A
o
� Efkf� � fk��

n
A
o

����

� X
k�k�log�Wmin	

E
���
f k bfwk � fk��P���

n
k bfwk � fk� � ��D�Wmax�

o
�

Next note that bfwk �t�� f�t� � bwk�t� � ��wk�t�� where

�wk�t� �
wkX
l��


l�l�t�� bwk�t� �
�X

l�wk��

	f��l��l�t�� ����

and 
l are i	i	d	 N ��� ��	 By the denition of FW �cf	 ���� we have kbwkk� � �D�W ���
since wk �W �	 Therefore

k bfwk � fk� � k�wkk� � �D�W ��� ����

Further by Lemma �

P

n
k�wkk� � p

wkx
o
� Cwk exp��x���� ��"�

Combining ����� ��"� we arrive at

P

n
k bfwk � fk� � ��D�C�Wmin�

o
� P

n
k�wkk� � ��D�wk��

o
����

� Cwk exp��� logwk�� � Cw
�
��
k �

By similar reasoning we obtain for any wk � W

Efk bfwk � fk�� � ���wk logwk�
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Hence� by ���� and ����

Efkf� � fk��
ncW �W

o
�

n
A
o
� C�W ���

max log���Wmax� ����

The probability P
ncW � W

o
has still to be evaluated	 Note that by ��� for any � � �

and wk � W

kbwk � bWk� � ����W �D�W � 	 o�����D�wk �W ��

Therefore using Lemma � one obtains

P

ncW � W
o
� X

k
i
k

P

n
k bfwk � bfwik� � ��� � ��D�wk � wi�

o
� X

k
i
k

P

n
k�wk � �wik� � �� � � � o����D�wk � wi�

o

� X
k
i
k

�wk � wi�
�	�o��	 �

�X
k��

��� � ��k � ���	�o��	
X
i
k

w
�	�o��	
i � CW�	�o��	����

Together with ���� and ����� this nally gives the following bound

R� � C�W�	�o��	���D�Wmax� � o����D�W �� ����

Now let us consider the second term R� of the risk	 Let B � fY �t� � kf� � fk� �
�D�W �g	 Now one can estimate R� as follows

R� � Efkf� � fk��
ncW �W

o
�

n
Bc
o

� Efkf� � k��
ncW � W

o
�

n
B
o

����

� �D�W � � Efkf� � fk��fcW � Wg�
n
B
o
�

n
kf� � fk� � ��D�W �

o
� Efkf� � fk��

ncW � W
o
�

n
B
o
�

n
kf� � fk� � ��D�W �

o
�

In the case of the event cW � W we have by the denition of f�

kf� � bfWk� � �� � ���D�W ��

Combined with the inequality kf�� fk� � kf�� bfWk� � k bfW � fk� this gives a bound
for the last term on the right
hand side of ����

Efkf� � fk��
ncW � W

o
�

n
B
o
�fkf� � fk� � ��D�W �g ����

� �� � ���D�W �Pf

n
k bfW � fk� � �� � ���D�W �

o
� Efk bfW � fk��

n
k bfW � fk� � ��� ���D�W �

o
�
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Since on FW the bias of bfW is bounded by o����D�W �� one can deduce that both right

hand terms are small	 Indeed by Lemma �

Pf

n
k bfW � fk� � �� � ���D�W �

o
� CW����	

and

Efk bfW � fk��
n
k bfW � fk� � �� � ���D�W �

o
� C�D�W �W

Z �

����		 log���W
exp��x��� dx � C�W�
���	�

Hence according to ����

Efkf� � fk��
ncW �W

o
�

n
B
o
�

n
kf� � fk� � ��D�W �

o
� C�W��� ����

Consider now the last term in ����	 We have

Efkf� � fk��
ncW �W

o
�

n
B
o
�

n
kf� � fk� � ��D�W �

o
����

� ��D�W �Ef�

ncW �W
o
�

n
B
o

� ��D�W �
X
k�k

Ef�

n
k bfwk � fk� � �D�W �

o
� �

n
k bfwk � fWk� � �D�W � wk�

o
�

Note that by ���� ���� �X
k�W

	f��k��k���
����� � o���D�W ��

Let

g�t� �
WX

k�wk

	f��k��k�t��

Since the processes bfwk and bfwk � fW are independent

Ef�

n
k bfwk � fk� � �D�W �

o
�

n
k bfwk � fWk� � �D�W � wk�

o
� Pf

n
k�wk � gk� � ��� ���D�W �

o
Pf

n
k�wk � �W � gk� � �D�W � wk�

o
�

Lemma � shows that right side in the above inequality is o���	 Hence by ���'��� R� �
�� � o�����D�W �	 This inequality together with ���� and ���� proves the theorem	
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� Remark on the lower bound

In this section we will brie�y discuss the minimax property of projection estimators	 The
next lemma provides easily veriable conditions which ensure that projection estimators
are asymptotically minimax over certain subsets (  L���� ��	

Lemma � Assume that conditions ��
�� are ful�lled� Let

f��t� �
����	WX
i��

�i�i�t��

where �i are i�i�d� N ��� ��dW �� If dW �� and Pff� � (g � � as W �� then

lim
W��

infbf sup
f��

Efk bf � fk���D�W �� � ���O�����

where inf is taken over all estimators�

We omit the proof� which is based on the Anderson lemma �see e	g	 Ibragimov� Has

minskii ������� and the well
known arguments put forward by Pinsker ������	 Consider
instead a simple example that shows how this lemma works	 Assume that the Fourier
coe�cients of the periodic function f�t� are decreasing exponentially	 More precisely� we
are dealing with the following functional class

( � ff � j	f��k�j � L exp���k�g�
Suppose we want to recover f��� from the noisy data ���� where �� �	 Using Lemma � it
is not di�cult to show that the projection estimator bfW��t� Y � in ��� with the bandwidth
W� � ��� log�L�� has the asymptotic risk �cf	 Golubev� Levit and Tsybakov �������

R� bfW� �(� � �� � o�����
�

�

�
log

L

�
log log

L

�

����

�

Here the estimator bfW��t� Y � is an asymptotically minimax estimator over (	 Indeed
according to Lemma � it is su�cient to exhibit a sequence d� ��� such that for �� �

P

�
�d�j
ij � L exp��� i�� � � i � �� � ��W�

�
� ��

Since exp��� i� � exp����� ��W�� � � L������� for i � ��� ��W� the above probability
is bounded from below by

P

�
�d�j
ij � L������ � � i � �� � ��W�

�
����

�
	
� �P

�
d�j
�j � L����

�
W�����	
� �� ��� ��W� exp���L������d����

When d� is chosen equal to log�L��� the right
hand side of ���� tends to � as � � ��
proving that the projection estimator is indeed asymptotically minimax	
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