493 research outputs found

    Greek Astronomical Calendars and their Relation to the Athenian Civil Calendar

    Get PDF
    Several investigations have been devoted to the Athenian calendar and to the cycles of Meton and Kallippos. However, most authors have not clearly distinguished between true and mean lunar months, nor between astronomical calendars and the Athenian calendar. In investigating the Athenian calendar, many authors have made use of the regular successions of full and hollow months described by Geminos in his Isagoge, without first making sure that these months were in actual use at Athens. Discussion as to whether ‘the month' began with the astronomical New Moon or with the visibility of the crescent might have been avoided if the authors had realised that the word ‘month' has several meanings and that in every particular case the meaning has to be inferred from the context. Peasants or soldiers, far away from civilisation, would start their month with the visible crescent, astronomers would make it begin at the day of true or mean New Moon, and cities would adapt their festival calendar to the needs of the moment, intercalating or omitting days in such a way that the festivals can be held at the days prescribed by law or tradition. Of course, it may happen any time that a civil month coincides with the astronomical or with the observed lunar month, but in absence of definite evidence we never have the right to identify a civil month with an astronomical mont

    Computing Small Certificates of Inconsistency of Quadratic Fewnomial Systems

    Get PDF
    B{\'e}zout 's theorem states that dense generic systems of n multivariate quadratic equations in n variables have 2 n solutions over algebraically closed fields. When only a small subset M of monomials appear in the equations (fewnomial systems), the number of solutions may decrease dramatically. We focus in this work on subsets of quadratic monomials M such that generic systems with support M do not admit any solution at all. For these systems, Hilbert's Nullstellensatz ensures the existence of algebraic certificates of inconsistency. However, up to our knowledge all known bounds on the sizes of such certificates -including those which take into account the Newton polytopes of the polynomials- are exponential in n. Our main results show that if the inequality 2|M| -- 2n ≤\le \sqrt 1 + 8{\nu} -- 1 holds for a quadratic fewnomial system -- where {\nu} is the matching number of a graph associated with M, and |M| is the cardinality of M -- then there exists generically a certificate of inconsistency of linear size (measured as the number of coefficients in the ground field K). Moreover this certificate can be computed within a polynomial number of arithmetic operations. Next, we evaluate how often this inequality holds, and we give evidence that the probability that the inequality is satisfied depends strongly on the number of squares. More precisely, we show that if M is picked uniformly at random among the subsets of n + k + 1 quadratic monomials containing at least Ω\Omega(n 1/2+ϵ\epsilon) squares, then the probability that the inequality holds tends to 1 as n grows. Interestingly, this phenomenon is related with the matching number of random graphs in the Erd{\"o}s-Renyi model. Finally, we provide experimental results showing that certificates in inconsistency can be computed for systems with more than 10000 variables and equations.Comment: ISSAC 2016, Jul 2016, Waterloo, Canada. Proceedings of ISSAC 201

    Efficient numerical diagonalization of hermitian 3x3 matrices

    Full text link
    A very common problem in science is the numerical diagonalization of symmetric or hermitian 3x3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an analytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from http://www.mpi-hd.mpg.de/~globes/3x3/ .Comment: 13 pages, no figures, new hybrid algorithm added, matches published version, typo in Eq. (39) corrected; software library available at http://www.mpi-hd.mpg.de/~globes/3x3

    Integrable Quasiclassical Deformations of Cubic Curves

    Get PDF
    A general scheme for determining and studying hydrodynamic type systems describing integrable deformations of algebraic curves is applied to cubic curves. Lagrange resolvents of the theory of cubic equations are used to derive and characterize these deformations.Comment: 24 page

    Stochastic Quantization of Topological Field Theory: Generalized Langevin Equation with Memory Kernel

    Full text link
    We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient

    Uniqueness of collinear solutions for the relativistic three-body problem

    Full text link
    Continuing work initiated in an earlier publication [Yamada, Asada, Phys. Rev. D 82, 104019 (2010)], we investigate collinear solutions to the general relativistic three-body problem. We prove the uniqueness of the configuration for given system parameters (the masses and the end-to-end length). First, we show that the equation determining the distance ratio among the three masses, which has been obtained as a seventh-order polynomial in the previous paper, has at most three positive roots, which apparently provide three cases of the distance ratio. It is found, however, that, even for such cases, there exists one physically reasonable root and only one, because the remaining two positive roots do not satisfy the slow motion assumption in the post-Newtonian approximation and are thus discarded. This means that, especially for the restricted three-body problem, exactly three positions of a third body are true even at the post-Newtonian order. They are relativistic counterparts of the Newtonian Lagrange points L1, L2 and L3. We show also that, for the same masses and full length, the angular velocity of the post-Newtonian collinear configuration is smaller than that for the Newtonian case. Provided that the masses and angular rate are fixed, the relativistic end-to-end length is shorter than the Newtonian one.Comment: 18 pages, 1 figure; typos corrected, text improved; accepted by PR

    Integrable Deformations of Algebraic Curves

    Get PDF
    A general scheme for determining and studying integrable deformations of algebraic curves, based on the use of Lenard relations, is presented. We emphasize the use of several types of dynamical variables : branches, power sums and potentials.Comment: 10 Pages, Proceedings Workshop-Nonlinear Physics: Theory and Experiment, Gallipoli 200

    Melnikov theory to all orders and Puiseux series for subharmonic solutions

    Full text link
    We study the problem of subharmonic bifurcations for analytic systems in the plane with perturbations depending periodically on time, in the case in which we only assume that the subharmonic Melnikov function has at least one zero. If the order of zero is odd, then there is always at least one subharmonic solution, whereas if the order is even in general other conditions have to be assumed to guarantee the existence of subharmonic solutions. Even when such solutions exist, in general they are not analytic in the perturbation parameter. We show that they are analytic in a fractional power of the perturbation parameter. To obtain a fully constructive algorithm which allows us not only to prove existence but also to obtain bounds on the radius of analyticity and to approximate the solutions within any fixed accuracy, we need further assumptions. The method we use to construct the solution -- when this is possible -- is based on a combination of the Newton-Puiseux algorithm and the tree formalism. This leads to a graphical representation of the solution in terms of diagrams. Finally, if the subharmonic Melnikov function is identically zero, we show that it is possible to introduce higher order generalisations, for which the same kind of analysis can be carried out.Comment: 30 pages, 6 figure
    • …
    corecore