13,395 research outputs found

    Psychological Issues in Online Adaptive Task Allocation

    Get PDF
    Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed

    Stiff Polymers, Foams and Fiber Networks

    Get PDF
    We study the elasticity of fibrous materials composed of generalized stiff polymers. It is shown that in contrast to cellular foam-like structures affine strain fields are generically unstable. Instead, a subtle interplay between the architecture of the network and the elastic properties of its building blocks leads to intriguing mechanical properties with intermediate asymptotic scaling regimes. We present exhaustive numerical studies based on a finite element method complemented by scaling arguments.Comment: 4 pages, 5 figure

    Filamin cross-linked semiflexible networks: Fragility under strain

    Full text link
    The semiflexible F-actin network of the cytoskeleton is cross-linked by a variety of proteins including filamin, which contain Ig-domains that unfold under applied tension. We examine a simple semiflexible network model cross-linked by such unfolding linkers that captures the main mechanical features of F-actin networks cross-linked by filamin proteins and show that under sufficiently high strain the network spontaneously self-organizes so that an appreciable fraction of the filamin cross-linkers are at the threshold of domain unfolding. We propose an explanation of this organization based on a mean-field model and suggest a qualitative experimental signature of this type of network reorganization under applied strain that may be observable in intracellular microrheology experiments of Crocker et al.Comment: 4 Pages, 3 figures, Revtex4, submitted to PR

    The arithmetic of genus two curves with (4,4)-split Jacobians

    Full text link
    In this paper we study genus 2 curves whose Jacobians admit a polarized (4,4)-isogeny to a product of elliptic curves. We consider base fields of characteristic different from 2 and 3, which we do not assume to be algebraically closed. We obtain a full classification of all principally polarized abelian surfaces that can arise from gluing two elliptic curves along their 4-torsion and we derive the relation their absolute invariants satisfy. As an intermediate step, we give a general description of Richelot isogenies between Jacobians of genus 2 curves, where previously only Richelot isogenies with kernels that are pointwise defined over the base field were considered. Our main tool is a Galois theoretic characterization of genus 2 curves admitting multiple Richelot isogenies.Comment: 30 page

    Unfolding cross-linkers as rheology regulators in F-actin networks

    Full text link
    We report on the nonlinear mechanical properties of a statistically homogeneous, isotropic semiflexible network cross-linked by polymers containing numerous small unfolding domains, such as the ubiquitous F-actin cross-linker Filamin. We show that the inclusion of such proteins has a dramatic effect on the large strain behavior of the network. Beyond a strain threshold, which depends on network density, the unfolding of protein domains leads to bulk shear softening. Past this critical strain, the network spontaneously organizes itself so that an appreciable fraction of the Filamin cross-linkers are at the threshold of domain unfolding. We discuss via a simple mean-field model the cause of this network organization and suggest that it may be the source of power-law relaxation observed in in vitro and in intracellular microrheology experiments. We present data which fully justifies our model for a simplified network architecture.Comment: 11 pages, 4 figures. to appear in Physical Review

    Computation of Casimir forces for dielectrics or intrinsic semiconductors based on the Boltzmann transport equation

    Full text link
    The interaction between drifting carriers and traveling electromagnetic waves is considered within the context of the classical Boltzmann transport equation to compute the Casimir-Lifshitz force between media with small density of charge carriers, including dielectrics and intrinsic semiconductors. We expand upon our previous work [Phys. Rev. Lett. {\bf 101}, 163203 (2008)] and derive in some detail the frequency-dependent reflection amplitudes in this theory and compute the corresponding Casimir free energy for a parallel plate configuration. We critically discuss the the issue of verification of the Nernst theorem of thermodynamics in Casimir physics, and explicity show that our theory satisfies that theorem. Finally, we show how the theory of drifting carriers connects to previous computations of Casimir forces using spatial dispersion for the material boundaries.Comment: 9 pages, 2 figures; Contribution to Proceedings of "60 Years of the Casimir Effect", Brasilia, June 200

    Pseudocraters on Mars

    Get PDF
    The morphology and origin of the Martian volcanic-dome like structures are compared to the terrestial pseudocraters

    Dynamics of folding in Semiflexible filaments

    Full text link
    We investigate the dynamics of a single semiflexible filament, under the action of a compressing force, using numerical simulations and scaling arguments. The force is applied along the end to end vector at one extremity of the filament, while the other end is held fixed. We find that, unlike in elastic rods the filament folds asymmetrically with a folding length which depends only on the bending stiffness and the applied force. It is shown that this behavior can be attributed to the exponentially falling tension profile in the filament. While the folding time depends on the initial configuration, at late time, the distance moved by the terminal point of the filament and the length of the fold shows a power law dependence on time with an exponent 1/2.Comment: 13 pages, Late
    • …
    corecore