48,246 research outputs found

    Geology and Geochemistry of the Ship Creek and Monashka Creek reservoirs, Southcentral Alaska

    Get PDF
    Graywacke from the Ship Creek watershed, dissolves incongruently in distilled water. The dissolution appears to follow a first-order rate law which in integrated form is: k = -2.303/t log No-Q/No where No is the concentration in ppm of Ca, Mg, Na or K in the graywacke, Q is the total quantity of these ions leached in time t(days), k is the rate constant in days-1. Experimentally derived rate constants for the dissolution of graywacke in distilled water at 5oC are log k+2CA, -4.128 day-1; log k+2Mg, -6.174 day-1; log k+Na, -5.800 day-1; and log k+K, -5.249 day-1. The above constants are for 40 to +100 mesh graywacke. A surface area correction term must be inserted in the above equation if it is applied to a different size fraction. Using the above equation and rate constants, the chemical composition of a water in contact with graywacke was calculated. With the exception of magnesium, the agreement between the calculated composition and that of Ship Creek water was good. Assuming that the groundwater in the Ship Creek watershed contacts about 1.5X104cm2 graywacke per liter, 120 to 360 days are required at 5oC to produce the concentration of ions observed in Ship Creek. Release of exchangeable H+ from the soil mat to the reservoir water will not significant1y lower the pH of the water. Leaching of heavy metals from sulfides contained in the bedrock of the two watersheds does not pose a water quality hazard. Lineaments in the bedrock at Monashka Creek may provide channels through which water may seep from the reservoir. These are not expected to pose a problem in retaining water in the reservoir, but they may result in small, new springs down grade from the reservoir.The work upon which this report is based was supported by funds provided by the United States Department of the Interior, Office of Water Resources Research and Technology, as authorized by the Water Resources Research Act of 1964, Public Law 88-379, as amended. (Project A-045-ALAS

    Closed String Thermal Torus From Thermo Field Dynamics

    Full text link
    In this Letter a topological interpretation for the string thermal vacuum in the Thermo Field Dynamics (TFD) approach is given. As a consequence, the relationship between the Imaginary Time and TFD formalisms is achieved when both are used to study closed strings at finite temperature. The TFD approach starts by duplicating the system's degrees of freedom, defining an auxiliary (tilde) string. In order to lead the system to finite temperature a Bogoliubov transformation is implemented. We show that the effect of this transformation is to glue together the string and the tilde string to obtain a torus. The thermal vacuum appears as the boundary state for this identification. Also, from the thermal state condition, a Kubo-Martin-Schwinger condition for the torus topology is derived.Comment: 14 pages, revtex4, changes in the text and references. Version to be published in Physics Letters

    THE INFLUENCE OF TECHNOLOGICAL PROGRESS ON THE LONG RUN FARM LEVEL ECONOMICS OF SOIL CONSERVATION

    Get PDF
    The complementary interaction between topsoil depth and technical progress for winter wheat in the Palouse region was found to strengthen the long run payoff to conservation tillage. Nonetheless, conservation tillage was found to be competitive with conventional tillage only if its current yield disadvantages were eliminated. Conservation tillage was relatively more competitive on shallower topsoils and for longer planning horizons. Short-term subsidies coupled with research directed towards reducing the cost and yield disadvantages of conservation tillage in the Palouse were advocated to maintain long-term soil productivity.Land Economics/Use, Research and Development/Tech Change/Emerging Technologies,

    A technique for evaluating the application of the pin-level stuck-at fault model to VLSI circuits

    Get PDF
    Accurate fault models are required to conduct the experiments defined in validation methodologies for highly reliable fault-tolerant computers (e.g., computers with a probability of failure of 10 to the -9 for a 10-hour mission). Described is a technique by which a researcher can evaluate the capability of the pin-level stuck-at fault model to simulate true error behavior symptoms in very large scale integrated (VLSI) digital circuits. The technique is based on a statistical comparison of the error behavior resulting from faults applied at the pin-level of and internal to a VLSI circuit. As an example of an application of the technique, the error behavior of a microprocessor simulation subjected to internal stuck-at faults is compared with the error behavior which results from pin-level stuck-at faults. The error behavior is characterized by the time between errors and the duration of errors. Based on this example data, the pin-level stuck-at fault model is found to deliver less than ideal performance. However, with respect to the class of faults which cause a system crash, the pin-level, stuck-at fault model is found to provide a good modeling capability

    Three dimensional finite temperature SU(3) gauge theory in the confined region and the string picture

    Full text link
    We determine the correlation between Polyakov loops in three dimensional SU(3) gauge theory in the confined region at finite temperature. For this purpose we perform lattice calculations for the number of steps in the temperature direction equal to six. This is expected to be in the scaling region of the lattice theory. We compare the results to the bosonic string model. The agreement is very good for temperatures T<0.7T_c, where T_c is the critical temperature. In the region 0.7T_c<T<T_c we enter the critical region, where the critical properties of the correlations are fixed by universality to be those of the two dimensional three state Potts model. Nevertheless, by calculating the critical lattice coupling, we show that the ratio of the critical temperature to the square root of the zero temperature string tension, where the latter is taken from the literature, remains very near to the string model prediction.Comment: 11 pages, 1 figure, 1 tabl

    New cluster members and halo stars of the Galactic globular cluster NGC 1851

    Full text link
    NGC 1851 is an intriguing Galactic globular cluster, with multiple stellar evolutionary sequences, light and heavy element abundance variations and indications of a surrounding stellar halo. We present the first results of a spectroscopic study of red giant stars within and outside of the tidal radius of this cluster. Our results identify nine probable new cluster members (inside the tidal radius) with heliocentric radial velocities consistent with that of NGC 1851. We also identify, based on their radial velocities, four probable extratidal cluster halo stars at distances up to ~3.1 times the tidal radius, which are supportive of previous findings that NGC 1851 is surrounded by an extended stellar halo. Proper motions were available for 12 of these 13 stars and all are consistent with that of NGC 1851. Apart from the cluster members and cluster halo stars, our observed radial velocity distribution agrees with the expected distribution from a Besancon disk/N-body stellar halo Milky Way model generated by the Galaxia code, suggesting that no other structures at different radial velocities are present in our field. The metallicities of these stars are estimated using equivalent width measurements of the near infrared calcium triplet absorption lines and are found, within the limitations of this method, to be consistent with that of NGC 1851. In addition we recover 110 red giant cluster members from previous studies based on their radial velocities and identify three stars with unusually high radial velocities.Comment: 10 pages, 8 figures. Accepted for publication in MNRA
    corecore