499 research outputs found
Toward understanding the early stages of an impulsively accelerated coronal mass ejection
The expanding magnetic flux in coronal mass ejections (CMEs) often forms a
cavity. A spherical model is simultaneously fit to STEREO EUVI and COR1 data of
an impulsively accelerated CME on 25 March 2008, which displays a well-defined
extreme ultraviolet (EUV) and white-light cavity of nearly circular shape
already at low heights ~ 0.2 Rs. The center height h(t) and radial expansion
r(t) of the cavity are obtained in the whole height range of the main
acceleration. We interpret them as the axis height and as a quantity
proportional to the minor radius of a flux rope, respectively. The
three-dimensional expansion of the CME exhibits two phases in the course of its
main upward acceleration. From the first h and r data points, taken shortly
after the onset of the main acceleration, the erupting flux shows an
overexpansion compared to its rise, as expressed by the decrease of the aspect
ratio from k=h/r ~ 3 to k ~ (1.5-2.0). This phase is approximately coincident
with the impulsive rise of the acceleration and is followed by a phase of very
gradual change of the aspect ratio (a nearly self-similar expansion) toward k ~
1.5 at h ~ 10 Rs. The initial overexpansion of the CME cavity can be caused by
flux conservation around a rising flux rope of decreasing axial current and by
the addition of flux to a growing, or even newly forming,flux rope by magnetic
reconnection. Further analysis will be required to decide which of these
contributions is dominant. The data also suggest that the horizontal component
of the impulsive cavity expansion (parallel to the solar surface) triggers the
associated EUV wave, which subsequently detaches from the CME volume.Comment: in press, A&A, 201
3D Reconstruction of a Rotating Erupting Prominence
A bright prominence associated with a coronal mass ejection (CME) was seen
erupting from the Sun on 9 April 2008. This prominence was tracked by both the
Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and
was seen to rotate about the line of sight as it erupted; therefore, the event
has been nicknamed the "Cartwheel CME." The threads of the prominence in the
core of the CME quite clearly indicate the structure of a weakly to moderately
twisted flux rope throughout the field of view, up to heliocentric heights of 4
solar radii. Although the STEREO separation was 48 degrees, it was possible to
match some sharp features in the later part of the eruption as seen in the 304
{\AA} line in EUVI and in the H\alpha-sensitive bandpass of COR1 by both STEREO
Ahead and Behind. These features could then be traced out in three-dimensional
space, and reprojected into a view in which the eruption is directed towards
the observer. The reconstructed view shows that the alignment of the prominence
to the vertical axis rotates as it rises up to a leading-edge height of \approx
2.5 solar radii, and then remains approximately constant. The alignment at 2.5
solar radii differs by about 115 degrees from the original filament orientation
inferred from H{\alpha} and EUV data, and the height profile of the rotation,
obtained here for the first time, shows that two thirds of the total rotation
is reached within \approx 0.5 solar radii above the photosphere. These features
are well reproduced by numerical simulations of an unstable moderately twisted
flux rope embedded in external flux with a relatively strong shear field
component.Comment: published in Solar Physics (Online First
Ideal kink instability of a magnetic loop equilibrium
The force-free coronal loop model by Titov & D\'emoulin (1999} is found to be
unstable with respect to the ideal kink mode, which suggests this instability
as a mechanism for the initiation of flares. The long-wavelength () mode
grows for average twists \Phi\ga3.5\pi (at a loop aspect ratio of
5). The threshold of instability increases with increasing major loop radius,
primarily because the aspect ratio then also increases. Numerically obtained
equilibria at subcritical twist are very close to the approximate analytical
equilibrium; they do not show indications of sigmoidal shape. The growth of
kink perturbations is eventually slowed down by the surrounding potential
field, which varies only slowly with radius in the model. With this field a
global eruption is not obtained in the ideal MHD limit. Kink perturbations with
a rising loop apex lead to the formation of a vertical current sheet below the
apex, which does not occur in the cylindrical approximation.Comment: Astron. Astrophys. Lett., accepte
Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source. II. Numerical Modeling
Numerical simulations of the helical () kink instability of an
arched, line-tied flux rope demonstrate that the helical deformation enforces
reconnection between the legs of the rope if modes with two helical turns are
dominant as a result of high initial twist in the range . Such
reconnection is complex, involving also the ambient field. In addition to
breaking up the original rope, it can form a new, low-lying, less twisted flux
rope. The new flux rope is pushed downward by the reconnection outflow, which
typically forces it to break as well by reconnecting with the ambient field.
The top part of the original rope, largely rooted in the sources of the ambient
flux after the break-up, can fully erupt or be halted at low heights, producing
a "failed eruption." The helical current sheet associated with the instability
is squeezed between the approaching legs, temporarily forming a double current
sheet. The leg-leg reconnection proceeds at a high rate, producing sufficiently
strong electric fields that it would be able to accelerate particles. It may
also form plasmoids, or plasmoid-like structures, which trap energetic
particles and propagate out of the reconnection region up to the top of the
erupting flux rope along the helical current sheet. The kinking of a highly
twisted flux rope involving leg-leg reconnection can explain key features of an
eruptive but partially occulted solar flare on 18 April 2001, which ejected a
relatively compact hard X-ray and microwave source and was associated with a
fast coronal mass ejection.Comment: Solar Physics, in pres
The torus instability
The expansion instability of a toroidal current ring in low-beta magnetized plasma is investigated. Qualitative agreement is obtained with experiments on spheromak expansion and with essential properties of solar coronal mass ejections (CMEs), unifying the two apparently disparate classes of fast and slow CMEs
- …