12,672 research outputs found
Surface pressure measurements at two tips of a model helicopter rotor in hover
Surface pressures were measured near the tip of a hovering single-bladed model helicopter rotor with two tip shapes. The rotor had a constant-chord, untwisted blade with a square, flat tip which could be modified to a body-of-revolution tip. Pressure measurements were made on the blade surface along the chordwise direction at six radial stations outboard of the 94 percent blade radius. Data for each blade tip configuration were taken at blade collective pitch angles of 0, 6.18 and 11.4 degrees at a Reynolds number of 736,000 and a Mach number of 0.25 both based on tip speed. Chordwise pressure distributions and constant surface pressure contours are presented and discussed
[OII] emitters in the GOODS field at z~1.85: a homogeneous measure of evolving star formation
We present the results of a deep, near-infrared, narrow band imaging survey
at a central wavelength of 1.062 microns (FWHM=0.01 microns) in the GOODS-South
field using the ESO VLT instrument, HAWK-I. The data are used to carry out the
highest redshift search for [OII]3727 emission line galaxies to date. The
images reach an emission line flux limit (5 sigma) of 1.5 x 10^-17 erg cm^-2
s^-1, additionally making the survey the deepest of its kind at high redshift.
In this paper we identify a sample of [OII]3727 emission line objects at
redshift z~1.85 in a co-moving volume of ~4100 Mpc^3. Objects are selected
using an observed equivalent width (EW_obs) threshold of EW_obs = 50 angstroms.
The sample is used to derive the space density and constrain the luminosity
function of [OII] emitters at z=1.85. We find that the space density of objects
with observed [OII] luminosities in the range log(L_[OII]) > 41.74 erg s^-1 is
log(rho)=-2.45+/-0.14 Mpc^-3, a factor of 2 greater than the observed space
density of [OII] emitters reported at z~1.4. After accounting for completeness
and assuming an internal extinction correction of A_Halpha=1 mag (equivalent to
A_[OII]=1.87), we report a star formation rate density of rho* ~0.38+/-0.06
Msun yr^-1 Mpc^-3. We independently derive the dust extinction of the sample
using 24 micron fluxes and find a mean extinction of A_[OII]=0.98+/-0.11
magnitudes (A_Halpha=0.52). This is significantly lower than the A_Halpha=1
(A[OII]=1.86) mag value widely used in the literature. Finally we incorporate
this improved extinction correction into the star formation rate density
measurement and report rho*~0.24+/-0.06 Msun yr^-1 Mpc^-3.Comment: 11 pages, 10 figures, accepted for publication in MNRA
Revealing Cosmic Rotation
Cosmological Birefringence (CB), a rotation of the polarization plane of
radiation coming to us from distant astrophysical sources, may reveal parity
violation in either the electromagnetic or gravitational sectors of the
fundamental interactions in nature. Until only recently this phenomenon could
be probed with only radio observations or observations at UV wavelengths.
Recently, there is a substantial effort to constrain such non-standard models
using observations of the rotation of the polarization plane of cosmic
microwave background (CMB) radiation. This can be done via measurements of the
-modes of the CMB or by measuring its TB and EB correlations which vanish in
the standard model. In this paper we show that correlations-based
estimator is the best for upcoming polarization experiments. The based
estimator surpasses other estimators because it has the smallest noise and of
all the estimators is least affected by systematics. Current polarimeters are
optimized for the detection of -mode polarization from either primordial
gravitational waves or by large scale structure via gravitational lensing. In
the paper we also study optimization of CMB experiments for the detection of
cosmological birefringence, in the presence of instrumental systematics, which
by themselves are capable of producing correlations; potentially mimicking
CB.Comment: 10 pages, 3 figures, 2 table
Every partridge counts, successful techniques used in the captive conservation breeding programme for wild grey partridge in Ireland
Between 1998 and 2001 the last remaining wild grey partridge (Perdix perdix) population in Ireland faced imminent extinction with an estimated spring population of 4–6 pairs, and an autumn population of 22–24 birds. A captive breeding programme began in 2002 with two pairs of grey partridge. In the most successful year in 2010, 39 pairs produced a total of 510 chicks. Average chick survival rate was 65.13%. At 88.9 the highest chick survival rate was achieved in 2011. Chick survival of parent–reared birds in captivity is defined by the number of juveniles surviving at age six weeks: similar to estimations used for wild populations of grey partridge. Family coveys were released in late summer to early autumn. In most instances the entire family cohort was released as one unit. However, in coveys of twenty or above, an average of five parent–reared poults were held back as breeding stock for the following year. In early spring of the following year, birds held back were paired with single males or females trapped from the wild. The techniques we used were traditional and labour intensive but highly effective. We recommend that other grey partridge recovery projects should consider captive breeding using the methods employed in this programme to compliment other game management methods used
What do women undergoing in vitro fertilization (IVF) understand about their chance of IVF success?
Funding No external funding was used for this study. S.L. is supported by a NHMRC Investigator Grant (APP1195189). R.W. is supported by a NHMRC Investigator Grant (GNT2009767). B.W.M. is supported by a NHMRC Investigator Grant (GNT1176437) and has received research funding and travel funding from MerckPeer reviewedPublisher PD
Discovery of three z>6.5 quasars in the VISTA Kilo-degree Infrared Galaxy (VIKING) survey
Studying quasars at the highest redshifts can constrain models of galaxy and
black hole formation, and it also probes the intergalactic medium in the early
universe. Optical surveys have to date discovered more than 60 quasars up to
z~6.4, a limit set by the use of the z-band and CCD detectors. Only one z>6.4
quasar has been discovered, namely the z=7.08 quasar ULAS J1120+0641, using
near-infrared imaging. Here we report the discovery of three new z>6.4 quasars
in 332 square degrees of the Visible and Infrared Survey Telescope for
Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, thus extending the
number from 1 to 4. The newly discovered quasars have redshifts of z=6.60,
6.75, and 6.89. The absolute magnitudes are between -26.0 and -25.5, 0.6-1.1
mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the MgII
emission line in all three objects. The quasars are powered by black holes with
masses of ~(1-2)x10^9 M_sun. In our probed redshift range of 6.44<z<7.44 we can
set a lower limit on the space density of supermassive black holes of
\rho(M_BH>10^9 M_sun) > 1.1x10^(-9) Mpc^(-3). The discovery of three quasars in
our survey area is consistent with the z=6 quasar luminosity function when
extrapolated to z~7. We do not find evidence for a steeper decline in the space
density of quasars with increasing redshift from z=6 to z=7.Comment: 14 pages, 9 figures. Published in Ap
A general scheme for modeling gamma-ray burst prompt emission
We describe a general method for modeling gamma-ray burst prompt emission. We
find that for the burst to be produced via the synchrotron process unphysical
conditions are required -- the distance of the source from the center of the
explosion () must be larger than cm and the source
Lorentz factor \gta 10^3; for such a high Lorentz factor the deceleration
radius () is less than even if the number density of particles
in the surrounding medium is as small as cm. The result,
, is in contradiction with the early x-ray and optical
afterglow data. The synchrotron-self-Compton (SSC) process fares much better.
There is a large solution space for a typical GRB prompt emission to be
produced via the SSC process. The prompt optical emission accompanying the
burst is found to be very bright (\lta 14 mag; for ) in the SSC
model, which exceeds the observed flux (or upper limit) for most GRBs.
Continuous acceleration of electrons can significantly reduce the optical flux
and bring it down to the observed limits. (Abridged)Comment: Published in MNRAS Jan 2008, 56 page
- …