5,815 research outputs found

    Investigation of the kinetics of crystallization of molten binary and ternary oxide systems Quarterly status report, 1 Dec. 1967 - 29 Feb. 1968

    Get PDF
    Reaction kinetics of crystallized molten binary and ternary oxide glass making composition

    Transport and the Order Parameter of Superconducting UPt3

    Full text link
    We calculate the ultrasonic absorption and the thermal conductivity in the superconducting state of UPt3_{3} as functions of temperature and direction of propagation and polarization. Two leading candidates for the superconducting order parameter are considered: the E1gE_{1g} and E2uE_{2u} representations. Both can fit the data except for the ultrasonic absorption in the AA phase. To do that, it is necessary to suppose that the system has only a single domain, and that must be chosen as the most favorable one. However, the E2uE_{2u} theory requires fine-tuning of parameters to fit the low temperature thermal conductivity. Thus, transport data favor the E1gE_{1g} theory. Measurements of the thermal conductivity as a function of pressure at low temperature could help to further distinguish the two theories.Comment: 7 pages, 4 figure

    Local gating of a graphene Hall bar by graphene side gates

    Full text link
    We have investigated the magnetotransport properties of a single-layer graphene Hall bar with additional graphene side gates. The side gating in the absence of a magnetic field can be modeled by considering two parallel conducting channels within the Hall bar. This results in an average penetration depth of the side gate created field of approx. 90 nm. The side gates are also effective in the quantum Hall regime, and allow to modify the longitudinal and Hall resistances

    Identification of the Orbital Pairing Symmetry in UPt_3

    Full text link
    This paper summarizes the results of a comprehensive analysis of the thermodynamic and transport data for the superconducting phases of UPt_3. Calculations of the transverse sound attenuation as a function of temperature, frequency, polarization, and disorder are presented for the leading models of the superconducting order parameter. Measurements of the specific heat, thermal conductivity, and transverse sound attenuation place strong constraints on the orbital symmetry of the superconducting order parameter. We show that the superconducting A and B phases are in excellent agreement with pairing states belonging to the odd-parity E_{2u} orbital representation.Comment: 11 pages with 7 figure

    Thermal conductivity in B- and C- phase of UPt_3

    Full text link
    Although the superconductivity in UPt_3 is one of the most well studied, there are still lingering questions about the nodal directions in the B and C phase in the presence of a magnetic field. Limiting ourselves to the low temperature regime (T<<Delta(0)), we study the magnetothermal conductivity with in semiclassical approximation using Volovik's approach. The angular dependence of the magnetothermal conductivity for an arbitrary field direction should clarify the nodal structure in UPt_3.Comment: 4 pages, 5 figure

    Identifying the pairing symmetry in the Sr2RuO4 superconductor

    Full text link
    We have analyzed heat capacity and thermal conductivity measurements of Sr2RuO4 in the normal and superconducting state and come to the conclusion that an order parameter with nodal lines on the Fermi surface is required to account for the observed low-temperature behavior. A gapped order parameter is inconsistent with the reported thermodynamic and transport data. Guided by a strongly peaked dynamical susceptibility along the diagonals of the Brillouin zone in neutron scattering data, we suggest a spin-fluctuation mechanism that would favor the pairing state with the gap maxima along the zone diagonals (such as for a d_{xy} gap). The most plausible candidates are an odd parity, spin-triplet, f-wave pairing state, or an even parity, spin-singlet, d-wave state. Based on our analysis of possible pairing functions we propose measurements of the ultrasound attenuation and thermal conductivity in the magnetic field to further constrain the list of possible pairing states.Comment: 7 pages, 5 figures; updated list of references and extended introduction; to appear in Phys. Rev. B (Oct. 2000
    • …
    corecore