6 research outputs found

    X-ray Resonant Scattering Study of the Order Parameters in Multiferroic TbMnO3_3

    Full text link
    We report on an extensive investigation of the multiferroic compound TbMnO3_3. Non-resonant x-ray magnetic scattering (NRXMS) revealed a dominant AA-type domain. The temperature dependence of the intensity and wavevector associated with the incommensurate magnetic order was found to be in good agreement with neutron scattering data. XRS experiments were performed in the vicinity of the Mn KK and Tb L3L_3 edges in the high-temperature collinear phase, the intermediate temperature cycloidal/ferroelectric phase, and the low-temperature phase. In the collinear phase resonant E1−E1E1-E1 satellites were found at the Mn KK edge associated with AA-type but also FF-type peaks. The azimuthal dependence of the FF-type satellites (and their absence in the NRXMS experiments) indicates that they are most likely non-magnetic in origin. We suggest instead that they may be associated with an induced charge multipole. At the Tb L3L_3 edge resonant AA- and FF-type satellites (E1−E1E1-E1) were observed in the collinear phase. These we attribute to a polarisation of the Tb 5dd states by the ordering of the Mn sublattice. In the cycloidal/ferroelectric phase a new set of resonant satellites appear corresponding to CC-type order. These appear at the Tb L3L_3 edge only. In addition to a dominant E1−E1E1-E1 component in the σ−π′\sigma-\pi^\prime channel, a weaker component is found in the pre-edge with σ−σ′\sigma-\sigma^\prime polarization. Calculations of the XRS were performed using the FDMNESFDMNES code showing that the unrotated σ−σ′\sigma-\sigma^\prime component of the Tb L3L_3 CC-type peaks appearing in the ferroelectric phase contains a contribution from a multipole that is odd with respect to both space and time, known in various contexts as the anapole.Comment: Phys. Rev. B (In press

    Synthesis of N,N-dialkylaminophenylacetylenes

    No full text
    corecore