123,048 research outputs found

    Observation of strong electron dephasing in disordered Cu93_{93}Ge4_4Au3_3 thin films

    Full text link
    We report the observation of strong electron dephasing in a series of disordered Cu93_{93}Ge4_4Au3_3 thin films. A very short electron dephasing time possessing very weak temperature dependence around 6 K, followed by an upturn with further decrease in temperature below 4 K, is found. The upturn is progressively more pronounced in more disordered samples. Moreover, a lnTT dependent, but high-magnetic-field-insensitive, resistance rise persisting from above 10 K down to 30 mK is observed in the films. These results suggest a nonmagnetic dephasing process which is stronger than any known mechanism and may originate from the coupling of conduction electrons to dynamic defects.Comment: to appear in Phys. Rev. Let

    Binding energies of hydrogen-like impurities in a semiconductor in intense terahertz laser fields

    Full text link
    A detailed theoretical study is presented for the influence of linearly polarised intense terahertz (THz) laser radiation on energy states of hydrogen-like impurities in semiconductors. The dependence of the binding energy for 1s and 2p states on intensity and frequency of the THz radiation has been examined.Comment: 14 pages, 4 figure

    Entanglement in general two-mode continuous-variable states: local approach and mapping to a two-qubit system

    Full text link
    We present a new approach to the analysis of entanglement in smooth bipartite continuous-variable states. One or both parties perform projective filterings via preliminary measurements to determine whether the system is located in some region of space; we study the entanglement remaining after filtering. For small regions, a two-mode system can be approximated by a pair of qubits and its entanglement fully characterized, even for mixed states. Our approach may be extended to any smooth bipartite pure state or two-mode mixed state, leading to natural definitions of concurrence and negativity densities. For Gaussian states both these quantities are constant throughout configuration space.Comment: 4 pages, RevTeX 4, one figure. Further modifications in response to journal referees, correction to expression for negativit

    NMR Measurements of Power-Law Behavior in the Spin-Wave and Critical Regions of Ferromagnetic EuO

    Get PDF
    Precision continuous-wave NMR measurements have been carried out over the entire magnetization curve of EuO and are presented in tabular form. Two very closely spaced resonances are observed and are attributed to domain and domain-wall signals. Both of the signals are useful for analysis in the spin-wave region. Only the domain signal is measurable above ~50K. The latter is used for fitting Tc and the critical exponent beta. The critical-region fits agree with previous measurements, within experimental error. The low-temperature data exhibit a clear-cut T^2 behavior, at variance with the expectations of conventional spin-wave theory. This result is discussed in relation to two semi-empirical spin-wave schemes, one formulated by N. Bykovetz, and one by U. Koebler. The NMR signal at 4.2K gives no indication of a quadrupole splitting, in contradiction to the interpretation of several previous spin-echo NMR spectra observed in EuO. This issue remains unresolved.Comment: 3 pages, 2 figures, 3 tables. in Proceedings of the 11TH Joint MMM-Intermag Conference, Washington, DC, 201

    Optimization of double drive pulse pumping in Ne-like Ge x-ray lasers

    Get PDF
    Pumping of the Ne-like Ge x-ray laser with two 100 ps duration pulses (a prepulse and main pulse) is investigated using a fluid and atomic physics code coupled to a 3D ray tracing postprocessor code. The modeling predicts the optimum ratio of the irradiance of the two pulses for the maximum x-ray laser output resulting from the balance between the relative lower electron density gradients and wider gain region which is produced with a larger prepulse and the higher peak gain coefficients produced with a small prepulse. With a longer pulse interval between prepulse and main pulse, a relatively lower optimum pulse ratio is found. The threshold irradiance of the main driving pulse with a prepulse required to make an order of magnitude enhancement of laser output compared to irradiation without a prepulse is also found at 3-4x10(13) W/cm(2) for Ne-like Ge. (C) 1998 American Institute of Physics

    The structure of the central disk of NGC 1068: a clumpy disk model

    Get PDF
    NGC 1068 is one of the best studied Seyfert II galaxies, for which the blackhole mass has been determined from the Doppler velocities of water maser. We show that the standard α\alpha-disk model of NGC 1068 gives disk mass between the radii of 0.65 pc and 1.1 pc (the region from which water maser emission is detected) to be about 7x107^7 M⊙_\odot (for α=0.1\alpha=0.1), more than four times the blackhole mass, and a Toomre Q-parameter for the disk is ∼\sim0.001. This disk is therefore highly self-gravitating and is subject to large-amplitude density fluctuations. We conclude that the standard α\alpha-viscosity description for the structure of the accretion disk is invalid for NGC 1068. In this paper we develop a new model for the accretion disk. The disk is considered to be composed of gravitationally bound clumps; accretion in this clumped disk model arises because of gravitational interaction of clumps with each other and the dynamical frictional drag exerted on clumps from the stars in the central region of the galaxy. The clumped disk model provides a self-consistent description of the observations of NGC 1068. The computed temperature and density are within the allowed parameter range for water maser emission, and the rotational velocity in the disk falls off as r−0.35r^{-0.35}.Comment: To appear in Ap

    Twisted and Nontwisted Bifurcations Induced by Diffusion

    Full text link
    We discuss a diffusively perturbed predator-prey system. Freedman and Wolkowicz showed that the corresponding ODE can have a periodic solution that bifurcates from a homoclinic loop. When the diffusion coefficients are large, this solution represents a stable, spatially homogeneous time-periodic solution of the PDE. We show that when the diffusion coefficients become small, the spatially homogeneous periodic solution becomes unstable and bifurcates into spatially nonhomogeneous periodic solutions. The nature of the bifurcation is determined by the twistedness of an equilibrium/homoclinic bifurcation that occurs as the diffusion coefficients decrease. In the nontwisted case two spatially nonhomogeneous simple periodic solutions of equal period are generated, while in the twisted case a unique spatially nonhomogeneous double periodic solution is generated through period-doubling. Key Words: Reaction-diffusion equations; predator-prey systems; homoclinic bifurcations; periodic solutions.Comment: 42 pages in a tar.gz file. Use ``latex2e twisted.tex'' on the tex files. Hard copy of figures available on request from [email protected]
    • …
    corecore