1,908 research outputs found

    Absolute Continuity of the Integrated Density of States for the Almost Mathieu Operator with Non-Critical Coupling

    Full text link
    We show that the integrated density of states of the almost Mathieu operator is absolutely continuous if and only if the coupling is non-critical. We deduce for subcritical coupling that the spectrum is purely absolutely continuous for almost every phase, settling the measure-theoretical case of Problem 6 of Barry Simon's list of Schr\"odinger operator problems for the twenty-first century.Comment: 13 pages, to appear in Inv. Mat

    Double butterfly spectrum for two interacting particles in the Harper model

    Full text link
    We study the effect of interparticle interaction UU on the spectrum of the Harper model and show that it leads to a pure-point component arising from the multifractal spectrum of non interacting problem. Our numerical studies allow to understand the global structure of the spectrum. Analytical approach developed permits to understand the origin of localized states in the limit of strong interaction UU and fine spectral structure for small UU.Comment: revtex, 4 pages, 5 figure

    Suppressed spin dephasing for 2D and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    Get PDF
    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the fingerprint of a suppression that is enhanced due to a strong anisotropy in spin-orbit fields that can occur when the Rashba and Dresselhaus contributions are engineered to cancel each other. A surprising observation is that this mechanisms for suppressing spin dephasing is not only effective for electrons in the heterojunction quantum well, but also for electrons in a deeper bulk layer.Comment: 5 pages, 3 figure

    Almost Sure Frequency Independence of the Dimension of the Spectrum of Sturmian Hamiltonians

    Full text link
    We consider the spectrum of discrete Schr\"odinger operators with Sturmian potentials and show that for sufficiently large coupling, its Hausdorff dimension and its upper box counting dimension are the same for Lebesgue almost every value of the frequency.Comment: 12 pages, to appear in Commun. Math. Phy

    Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schr\"{o}dinger operators

    Get PDF
    In this paper, we consider one dimensional adiabatic quasi-periodic Schr\"{o}dinger operators in the regime of strong resonant tunneling. We show the emergence of a level repulsion phenomenon which is seen to be very naturally related to the local spectral type of the operator: the more singular the spectrum, the weaker the repulsion

    On semiclassical dispersion relations of Harper-like operators

    Full text link
    We describe some semiclassical spectral properties of Harper-like operators, i.e. of one-dimensional quantum Hamiltonians periodic in both momentum and position. The spectral region corresponding to the separatrices of the classical Hamiltonian is studied for the case of integer flux. We derive asymptotic formula for the dispersion relations, the width of bands and gaps, and show how geometric characteristics and the absence of symmetries of the Hamiltonian influence the form of the energy bands.Comment: 13 pages, 8 figures; final version, to appear in J. Phys. A (2004

    Critical Exponents for Diluted Resistor Networks

    Full text link
    An approach by Stephen is used to investigate the critical properties of randomly diluted resistor networks near the percolation threshold by means of renormalized field theory. We reformulate an existing field theory by Harris and Lubensky. By a decomposition of the principal Feynman diagrams we obtain a type of diagrams which again can be interpreted as resistor networks. This new interpretation provides for an alternative way of evaluating the Feynman diagrams for random resistor networks. We calculate the resistance crossover exponent ϕ\phi up to second order in ϵ=6−d\epsilon=6-d, where dd is the spatial dimension. Our result ϕ=1+ϵ/42+4ϵ2/3087\phi=1+\epsilon /42 +4\epsilon^2 /3087 verifies a previous calculation by Lubensky and Wang, which itself was based on the Potts--model formulation of the random resistor network.Comment: 27 pages, 14 figure
    • …
    corecore