3,862 research outputs found

    Multiscale description of carbon-supersaturated ferrite in severely drawn pearlitic wires

    Get PDF
    AbstractA multiscale simulation approach based on atomistic calculations and a discrete diffusion model is developed and applied to carbon-supersaturated ferrite, as experimentally observed in severely deformed pearlitic steel. We employ the embedded atom method and the nudged elastic band technique to determine the energetic profile of a carbon atom around a screw dislocation in bcc iron. The results clearly indicate a special region in the proximity of the dislocation core where C atoms are strongly bound, but where they can nevertheless diffuse easily due to low barriers. Our analysis suggests that the previously proposed pipe mechanism for the case of a screw dislocation is unlikely. Instead, our atomistic as well as the diffusion model results support the so-called drag mechanism, by which a mobile screw dislocation is able to transport C atoms along its glide plane. Combining the C-dislocation interaction energies with density-functional-theory calculations of the strain dependent C formation energy allows us to investigate the C supersaturation of the ferrite phase under wire drawing conditions. Corresponding results for local and total C concentrations agree well with previous atom probe tomography measurements indicating that a significant contribution to the supersaturation during wire drawing is due to dislocations

    Approximating the impact of nuclear quantum effects on thermodynamic properties of crystalline solids by temperature remapping

    Get PDF
    When computing finite-temperature properties of materials with atomistic simulations, nuclear quantum effects are often neglected or approximated at the quasiharmonic level. The inclusion of these effects beyond this level using approaches like the path integral method is often not feasible due to their large computational effort. We discuss and evaluate the performance of a temperature-remapping approach that links the finite-temperature quantum system to its best classical surrogate via a temperature map. This map, which is constructed using the internal energies of classical and quantum harmonic oscillators, is shown to accurately capture the impact of quantum effects on thermodynamic properties at an additional cost that is negligible compared to classical molecular dynamics simulations. Results from this approach show excellent agreement with previously reported path integral Monte Carlo simulation results for diamond cubic carbon and silicon. The approach is also shown to work well for obtaining thermodynamic properties of light metals and for the prediction of the fcc to bcc phase transition in calcium

    Understanding anharmonicity in fcc Materials: From its origin to ab initio strategies beyond the quasiharmonic approximation

    No full text
    We derive the Gibbs energy including the anharmonic contribution due to phonon-phonon interactions for an extensive set of unary fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) by combining density-functional-theory (DFT) calculations with efficient statistical sampling approaches. We show that the anharmonicity of the macroscopic system can be traced back to the anharmonicity in local pairwise interactions. Using this insight, we derive and benchmark a highly efficient approach which allows the computation of anharmonic contributions using a few T=0K DFT calculations only. © Published by the American Physical Society 2015

    A QM/MM approach for low-symmetry defects in metals

    Get PDF
    Concurrent multiscale coupling is a powerful tool for obtaining quantum mechanically (QM) accurate material behavior in a small domain while still capturing long range stress fields using a molecular mechanical (MM) description. We outline an improved scheme for QM/MM coupling in metals which permits the QM treatment of a small region chosen from a large, arbitrary MM domain to calculate total system energy and relaxed geometry. In order to test our improved method, we compute solute-vacancy binding in bulk Al as well as the binding of Mg and Pb to a symmetric Σ5 grain boundary. Results are calculated with and without our improvement to the QM/MM scheme and compared to periodic QM results for the same systems. We find that our scheme accurately and efficiently reproduces periodic QM target values in these test systems and therefore can be expected to perform well using more general geometries. © 2016 Published by Elsevier B.V

    On the structure of the body of states with positive partial transpose

    Full text link
    We show that the convex set of separable mixed states of the 2 x 2 system is a body of constant height. This fact is used to prove that the probability to find a random state to be separable equals 2 times the probability to find a random boundary state to be separable, provided the random states are generated uniformly with respect to the Hilbert-Schmidt (Euclidean) distance. An analogous property holds for the set of positive-partial-transpose states for an arbitrary bipartite system.Comment: 10 pages, 1 figure; ver. 2 - minor changes, new proof of lemma

    Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys

    Get PDF
    We study the properties of NiTi shape-memory nanoparticles coherently embedded in TiV matrices using three-dimensional atomistic simulations based on the modified embedded-atom method. To this end, we develop and present a suitable NiTiV potential for our simulations. Employing this potential, we identify the conditions under which the martensitic phase transformation of such a nanoparticle is triggered—specifically, how these conditions can be tuned by modifying the size of the particle, the composition of the surrounding matrix, or the temperature and strain state of the system. Using these insights, we establish how the transformation temperature of such particles can be influenced and discuss the practical implications in the context of shape-memory strengthened alloys
    corecore