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Approximating the impact of nuclear quantum effects on thermodynamic properties
of crystalline solids by temperature remapping
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When computing finite-temperature properties of materials with atomistic simulations, nuclear quantum
effects are often neglected or approximated at the quasiharmonic level. The inclusion of these effects beyond this
level using approaches like the path integral method is often not feasible due to their large computational effort.
We discuss and evaluate the performance of a temperature-remapping approach that links the finite-temperature
quantum system to its best classical surrogate via a temperature map. This map, which is constructed using
the internal energies of classical and quantum harmonic oscillators, is shown to accurately capture the impact
of quantum effects on thermodynamic properties at an additional cost that is negligible compared to classical
molecular dynamics simulations. Results from this approach show excellent agreement with previously reported
path integral Monte Carlo simulation results for diamond cubic carbon and silicon. The approach is also shown
to work well for obtaining thermodynamic properties of light metals and for the prediction of the fcc to bee phase

transition in calcium.
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I. INTRODUCTION

Many phenomena and properties in materials sensitively
depend on the temperature at which the material is processed
or operating, making it essential for modern simulation tech-
niques to accurately account for temperature dependence.
For solids, lattice vibrations beyond those predicted by the
harmonic model significantly impact key material properties
such as the heat capacity, thermal expansion, and free energy
[1]. Well-established approximations are routinely used to
account for the effect of temperature on these properties. At
low temperatures, the quasiharmonic approximation (QHA) is
the method of choice as it provides a computationally efficient
schema to analytically derive the free energy from the easy-to-
calculate force constant matrix [2,3]. A significant advantage
of this approach is that it includes (harmonic) quantum effects
by construction. At higher temperatures, classical molecular
dynamics (MD) simulations are an established tool [4].

Using one of these two approaches to describe the temper-
ature dependence of any material poses several limitations: (1)
Anharmonic contributions, which can exist even at T = 0 K,
are not captured by the QHA. (2) Classical MD simulations
based on Newtonian dynamics do not include any quantum
effects. (3) The asymptotic behaviors of the two approaches
when going to high/low temperatures are fundamentally dif-
ferent. (4) Key material quantities such as the free energy and
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entropy contain information from 7 = 0 K all the way up to
the target temperature [see Eq. (6)]. Such quantities will be
affected even at high temperatures by quantum nuclear effects.
Important examples for which this issue becomes critical are
the computation of accurate phase transitions [5] and the gen-
eration of thermodynamic phase diagrams, both of which are
crucial for materials design.

One can address many of the above issues by splitting
the atomic degrees of freedom into one or a few collec-
tive coordinates that capture the anharmonic behavior, while
the remaining majority are (approximately) harmonic. In the
QHA, for example, the lattice constant (volume) of the crystal
captures the anharmonic behavior of a perfect bulk crystal.
This separation allows one to perform for any fixed vol-
ume (the anharmonic degree of freedom) the free energy
calculation over the remaining (close to harmonic) degrees
of freedom in the harmonic approximation. The remaining
classical anharmonic contribution (not accounted for by the
QHA) in these degrees of freedom can then be computed by
thermodynamic integration (TT) [6—10]. Since the classical an-
harmonic contribution vanishes at 7 = 0 K by construction,
this approach smoothly interpolates between the quasihar-
monic quantum mechanical and high-temperature classical
solutions. However, this approach captures explicit anhar-
monicity, i.e., beyond the anharmonic degree of freedom,
solely classically. It also requires a priori knowledge of the
dominant anharmonic degree(s) of freedom, which is straight-
forward for simple bulk systems such as cubic fcc or bec
structures in which a single bulk lattice constant is often
sufficient. For more complex bulk systems and systems with
defects, making this decomposition is challenging and may
not even be systematically possible.

A framework that overcomes all of the above-listed limita-
tions, i.e., in which both quantum effects and anharmonicity
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are fully captured, was first introduced by Feynman and Hibbs
in the mid-20th century [11,12]. It takes action-minimizing
path integrals (PIs) over different configurations of the system
and can be realized computationally with a hyperdimensional
polymer approach [13] in which the quantum-classical iso-
morphism underlying Feynman’s insights is represented by
the concurrent and coupled evolution of multiple images of
the system.

By its nature, the approach of path integral Monte Carlo
(PIMC) or path integral molecular dynamics (PIMD) is
computationally demanding. Markland and Ceriotti [14] thor-
oughly reviewed methodological work up to the current state
of the art. They focused on various acceleration approaches
which allow quantum effects to be fully accounted for in
systems of hundreds of atoms. These advances are significant
to model systems of large sizes such as multicomponent alloys
and the accompanying defects in their microstructure (e.g.,
dislocations, grain boundaries, phase boundaries). However,
the fact that these acceleration schemes have not been used
to simulate such large systems indicates that their implemen-
tations need to be more accessible and that there is a need
for more direct approaches that do not require such complex
implementations.

In this work, we revisit an idea for approximating nuclear
quantum effects (NQEs) first introduced by Wang et al. in
1990 [15] that is easy to implement and introduces only an
O(1) cost compared to running classical MD simulations. In
this approach, quantum effects at a given temperature are
approximated by finding a classical system at a different
temperature that best represents the quantum system. While
most previous applications of this approach have focused
on computing conductivity and transport properties (e.g.,
Refs. [16-25]), Xu er al. recently used a combination of
this approach with thermodynamic integration to compute the
free energy of Ar [26]. In the present study, we systemat-
ically explore and analyze this concept, which we call the
temperature-remapping approximation (TRA), starting with
its fundamentals and discussing how it is effectively the Ein-
stein approximation to the Debye “colored noise” approach
for accelerating PIMD [27,28]. We make a rigorous compar-
ison of the TRA with existing PI results in the literature for
C and Si and use the approach to calculate material properties
like the internal energy, heat capacity, thermal expansion, and
free energy of metals (Al, Mg, and Ca). We thus demonstrate
that the TRA captures the explicitly calculated quantum ef-
fects to within a few meV /atom at a negligible additional cost
compared to running classical MD simulations.

II. METHODOLOGY
A. Theory

Unlike classical systems, at low temperatures, quantum
mechanical systems have a quantized phonon spectra and
zero-point energy; that is, even at 7 = 0 K, the kinetic
energy of the system does not drop to exactly zero. At
high temperatures, quantum and classical behaviors converge,
but quantum effects can contribute to the overall behavior
even up to moderate temperatures for typical nuclei. This
quantum/classical difference is illustrated in Fig. 1(a), which
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FIG. 1. (a) Probability density P for a single particle in a poten-
tial V (r) (solid black line). The potential resembles a Lennard-Jones
potential for Al. Densities at three different temperatures (0, 100,
and 500 K) for the classical system (dashed lines) and the quantum
system (solid lines) are shown. (b) Example of temperature mapping:
The classical probability density that best matches the quantum one
at T = 0 K (solid blue line) is 86 K (dashed orange line with circles).

compares the probability density P of finding a single parti-
cle at a point r in a simple Lennard-Jones potential V (r) at
different temperatures 7', classically by Boltzmann inversion
[Pc x exp(—V/kgT)] and quantum mechanically by solving
the time-independent Schrédinger equation Pom. The classi-
cal single-particle density Pc becomes increasingly sharply
peaked at low temperatures, ultimately reducing to a § spike
at the minimum-energy configuration as the temperature goes
down to zero. Although this one-dimensional figure is purely
pedagogical, Fig. 1(b) illustrates how the probability density
of the quantum system Powm can be almost perfectly matched
by a classical surrogate system at a “rescaled” higher temper-
ature. For the example potential used in Fig. 1(b), the quantum
mechanical 7 = 0 K density is very closely matched by a
classical density at 86 K.

In the case of a symmetric double-well potential where the
zero-point energy is comparable to the height of the barrier
like in Fig. 2(a), the quantum mechanical distribution at tem-
peratures close to 7 = 0 K cannot be accurately mapped to
a classical surrogate. However, the mapping improves signif-
icantly if the barrier is high enough to include more energy
states in the two wells of the potential, as shown in Fig. 2(b).
We can thus exploit this almost perfect match between the
quantum mechanical density and the temperature-rescaled
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FIG. 2. Probability density P for a particle in a symmetric
double-well potential V (r) (solid black line) with (a) a shallow bar-
rier where the zero-point energy level is comparable to the height
of the barrier and (b) a higher barrier at 7 = 0 K. The quantum
mechanical density is represented by the solid blue line, and its
best classical surrogate is represented by the orange dashed line
with circles in both plots. The lowest energy levels are indicated by
the dashed green lines. As the height of the barrier increases, more
energy levels can be accommodated in the two wells of the potential,
largely improving the agreement between the quantum mechanical
and mapped classical densities.

classical one to build a temperature map 7c(7 ), which pro-
vides the optimal temperature at which the classical system
can best reproduce the probability density or a property in the
quantum system at the target temperature 7 .

In principle, any temperature-dependent property can be
used to construct a temperature map as long as it has both
classical and quantum mechanical solutions. In addition, for
the TRA to be computationally efficient, the estimation of this
property must be inexpensive across the relevant range of tem-
peratures, i.e., from 7 = 0 K up to the melting temperature.
A property that meets these criteria is the internal energy of a
system of harmonic oscillators. For an atomic system, the har-
monic approximation (HA) treats all the atoms in the system
as harmonic oscillators whose temperature-dependent internal
energy can be obtained analytically. The internal energy for
the classical system of oscillators is

Uc = NkgT, ey

and the internal energy for the quantum mechanical system of
oscillators is

1 1
Ugm = /th(v)[E +

—]du, 2)
exp(hv/kgT) — 1

where £ is the reduced Planck constant, kg is the Boltzmann
constant, N is the number of atoms, and D(v) is the phonon
density of states for phonon frequencies v obtained from the
dynamical matrix. We can then replace T by 7c(T) in Eq. (1)
and solve for Tc(T') by setting Ugm = Uc. More generally, for
any quantum mechanical property Xqum, the temperature map
can be built using the following implicit definition for 7¢:

Xom(T) = Xc(Tc(T)). 3

This temperature map allows us to obtain for any temperature-
dependent property from classical MD simulations the
corresponding quantum mechanical property by simply cal-
culating the property at Tc(T) instead of 7. The choice of
the internal energy of the harmonic system as the mapping
property is meaningful, as it can be obtained directly as an
output result of MD simulations and is critical for correctly
predicting important thermodynamic properties such as the
heat capacity and free energy.

A limitation of building the temperature map in the har-
monic limit is that quantum anharmonicity, i.e., anharmonic
contributions that are probed by a quantum mechanical system
even at T = 0 K, is not included. However, the final results
still include anharmonic effects, as we ultimately apply this
map to properties from classical MD simulations at finite
temperatures that fully include the (classical) anharmonic
contributions.

Among existing methods for capturing NQEs, the approach
outlined above is closest to the technique of colored noise
thermostats [27,28]. These thermostats reproduce the impact
of quantization on nuclei by giving the thermostat target tem-
perature an explicit frequency dependence. When combined
with PIMD, these thermostats give access to a highly accurate
evaluation of NQEs using fewer images than would be pos-
sible with PI alone [29]. The TRA is a radical simplification
of colored noise thermostats, analogous to the relationship be-
tween the Einstein and Debye models for specific heat: Instead
of the Debye-like treatment of adjusting the thermostat in a
frequency-dependent way, TRA corresponds to an Einstein-
like approach that makes a single, frequency-independent
(temperature-dependent) adjustment to the thermostat. Al-
though only approximate, the TRA removes the need for
any replicas, such that the only additional computational cost
compared to simple, classical MD simulations is the one-time
overhead of building the temperature map 7c (7 ), which, in
this case, is simply an HA at 7 = 0 K.

B. Computational details

All classical MD simulations were performed using inter-
atomic potentials within the LAMMPS simulator [30]. Phonon
frequencies necessary for the HA and the QHA were obtained
using the PHONOPY package [31]. Both of these were used
within PYIRON [32], an IDE which facilitates reproducible
and readable workflows. We chose five chemical species for
our simulations: C and Si (diamond cubic), Al (fcc), Mg
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TABLE I. Crystal structure, optimum cell size, MD time steps,
and the T = 0 K Debye temperatures Tpepye for the simulated chem-
ical species.

Species  Crystal structure ~ Cell size  Time step (fs)  Tpepye (K)
C Diamond cubic 4 x4 x 4 0.25 2313
Si Diamond cubic 4 x4 x 4 1.0 532
Al fcc 5x5x%x5 1.0 417
Mg hcp 6x6x6 1.0 387
Ca fcc 5x5x%x5 1.0 239
Ca bce 6x6x%x6 1.0 161

(hep), and Ca (fcc with a phase transition to bec). C and Si
were chosen because PIMC studies have been conducted for
these species [33-35] and can be used as a benchmark for
the TRA. From the figures reported in these studies, we ex-
tracted numeric data using WEBPLOTDIGITIZER [36]. In order
to perform the benchmarking, identical empirical potentials
as used in the original PIMC studies were used: For the
simulations of C, we used the same Tersoff-type potential
[37] as Ref. [33], which includes a modification of param-
eters A and B to 1387.3 and 348.3 eV, respectively, to give
better agreement of the lattice parameter with experimental
values than the original parameters A and B. For Si, we used
the original Stillinger and Weber potential [38] as used in
Refs. [34,35]. Embedded-atom method (EAM) potentials with
Finnis-Sinclair [39] parametrization were used for Al [40],
Mg [41], and Ca [42].

Internal energies required to build the temperature map
were obtained from the HA performed on bulk structures of
cell size4 x 4 x 4, from T = 0 K up to the maximum PIMC
reference temperatures for C and Si (3000 and 1000 K, re-
spectively), from 7' = 0 K up to the melting temperatures for
Al and Ca (926 and 997 K, respectively, obtained from their
potentials using the methodology described in Ref. [43]) and
from 7 = 0 K up to 600 K for Mg. The Debye temperatures
Tpevye Were also obtained for the species from the HA at
T = 0 K and are shown in Table I. The temperature map was
obtained following Eqs. (1) through (3).

The cell sizes used for the MD simulation are shown in
Table 1. They were obtained after a careful convergence test,
which involved comparing the internal energies and lattice
parameters simulated using increasing cell sizes (2 x 2 x 2
to 7 x 7 x 7). The optimum cell size was the size for which
a further increase in cell size did not change the internal
energy by more than 0.5 meV and the lattice parameter by
more than 0.5 mA. This was followed by the same test using
the optimum cell size with decreasing MD time steps (1 to
0.1 fs). The converged time step values are also shown in
Table 1.

MD data were sampled using NPT simulations for 100
temperatures over the temperature range with five independent
runs for each temperature. Each single MD simulation was
run for a total simulation time of 1 ns, including 50 ps of
thermal equilibration time for the optimum cell size and time
step for each of the species, for a pressure of 1 atm for C and
Si (as used in the PIMC studies) and zero pressure for Al, Mg,
and Ca.
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FIG. 3. Accuracy of the polynomial fit to describe the temper-
ature dependence of the internal energy for varying polynomial
degrees. The polynomial degree is given in the legend. The example
shown here has been performed for Al. For polynomials of degree
5 and above, only high-frequency noise is observed, implying that a
fifth-order polynomial is sufficient.

Since the internal energy and lattice parameter vary
smoothly as a function of temperature, we used a polynomial
to fit these data. The associated fit error was analyzed and
is shown for the example of Al in Fig. 3 for a variety of
polynomials. While for the second-, third-, and fourth-order
polynomials low-frequency information is evident, for poly-
nomials of fifth order and higher only high-frequency noise is
visible. This behavior was observed for all the species stud-
ied here. We therefore used a fifth-order polynomial, which
guarantees fitting errors that are well below 1 meV/atom.
Having this polynomial fit allows us to perform a continuous
remapping of the classical results in the TRA.

For the QHA calculations with cubic symmetry, 15 vol-
umes around the 7 = 0 K equilibrium volume were used. For
hcp Mg, we used a 7 x 7 grid of a and c lattice parameter
values.

TI simulations were performed for Al, Mg, and Ca us-
ing Frenkel-Ladd nonequilibrium thermodynamic integration.
The calculations were performed according to the method-
ology in Ref. [44] and provided the classical Helmholtz
free energy with the center of mass correction. The forward
and backward sampling steps were scaled up to 100000
steps, following a 20 000-step thermal equilibration. The re-
sulting Helmholtz free energy was converted to Gibbs free
energy following the volume-distribution approach described
in Ref. [45]. The TI simulations were performed for 100
temperatures over the temperature range with five independent
runs for each temperature.

III. RESULTS AND DISCUSSION

A. Temperature map

We first look at the classical to quantum temperature maps
obtained from the TRA for all five species. Figure 4(a) shows
the calculated temperature maps, and Fig. 4(b) shows their
respective ratios of the difference between the remapped and
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FIG. 4. (a) Remapping between classical 7¢ and quantum me-
chanical temperature 7' for C (solid blue line), Si (dashed yellow
line), Al (dash-dotted green line), Mg (dashed orange line), fcc Ca
(dash-dotted pink line), and bcc Ca (dashed brown line). The black
dotted line marks unity, where classical and quantum mechanical
temperatures are identical. (b) The respective ratios of the difference
between the remapped temperatures and the input temperatures and
the Debye temperature.

input temperatures and the Debye temperature (i.e., [Tc(T) —
T]/ TDebye)‘

For C (solid blue line), we find that the lowest remapped
classical temperature, i.e., the one describing the quantum
mechanical T = 0 K temperature, is 823 K. This value is
surprisingly large: To approximate zero-point vibrations, a
classical simulation well above room temperature is required.
As may be expected, this value is well below the Debye tem-
perature (Tpepye = 2313 K) and the sublimation temperature
of diamond cubic C. It is interesting to note that even at
temperatures as high as 3000 K (i.e., close to sublimation),
the behavior is not purely classical: The remapped temper-
ature still sits about 89 K above the true temperature. It
indicates that even at the sublimation/melting temperature,
NQEs cannot be neglected and may have to be included to
obtain accurate melting temperatures. This is supported by
the temperature maps of Si and Al, which also show a similar
offset at the highest simulated temperature (30 K offset for Si
at 1000 K, 32 K offset for Al at the melting temperature).

Figure 4(a) also shows that for Si, Al, Mg, and Ca, the
lowest classical temperature corresponding to 7 = 0 K is sig-
nificantly lower (274, 138, 145, and 75 K, respectively). For
the metallic systems, these values are well below their melting
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FIG. 5. Internal energies of (a) C and (c) Si as a function of tem-
perature from MD (solid blue line) and the QHA (solid orange line)
for a 4 x 4 x 4 cell. Also included are results for the TRA with a
4 x 4 x 4 cell (dashed black line), a2 x 2 x 2 cell (dot-dashed green
line), and the PIMC literature data (red circles) using a 2 x 2 x 2
cell. (b) Difference between reference (TRA/QHA) and PIMC in-
ternal energies of (b) C and (d) Si. Results are shown for the QHA
(dashed orange line), 2 x 2 x 2 (solid green line), 3 x 3 x 3 (dot-
dashed yellow line), 4 x 4 x 4 (dashed black line), and 5 x 5 x 5
(dotted blue line) cells for the TRA. The PIMC literature data were
obtained using a 2 x 2 x 2 cell.

temperatures. On a relative temperature scale with respect to
the Debye temperature, the temperature maps look much more
similar, as shown in Fig. 4(b).

B. Diamond cubic C

To test the performance of the TRA for approximating
NQEs, we compare structural and thermodynamic proper-
ties obtained from the TRA to those computed using PIMC
simulations by Herrero and Ramirez for bulk diamond cu-
bic C [33]. We first consider the internal energy. Next to
the resulting internal energy from the TRA, Fig. 5(a) also
shows the internal energies from the MD simulations and
QHA, as well as PIMC literature values. By construction,
the TRA results show excellent agreement with the QHA
at low temperatures. With increasing temperature, the TRA
internal energy smoothly approaches the classical one from
the MD simulations, showing that the approach can smoothly
and accurately connect the low- and high-temperature limits.

To evaluate how the TRA compares to PIMC, we look
directly at the energy differences between the two approaches,
which are on the meV scale, in Fig. 5(b). On this scale, the
impact of size convergence becomes visible. Using the same
computational cell as Ref. [33] (2 x 2 x 2), the TRA over-
estimates the full PIMC-calculated internal energy by about
7 meV at T = 0 K, increasing to about 12 meV at 3000 K.
A significant part (about 4 meV) of the difference between
the PIMC and TRA results occurs already at T = 0 K, which
is visible from the difference between the QHA and PIMC
internal energies. This implies that zero-point vibrations al-
ready experience anharmonicity that the HA does not capture.
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FIG. 6. (a) Lattice parameters of (a) C and (c) Si and (b) and
(d) their corresponding heat capacities, respectively, as a function of
temperature. The data are obtained from MD (solid blue line), the
QHA (solid orange line), the TRA (dashed black line), and the TRA
using Eq. (5) (green crosses) for a4 x 4 x 4 cell and PIMC literature
data (red circles) fora 2 x 2 x 2 cell. MD reference data [46] for the
lattice parameters of Si are represented by blue squares.

This inability to account for 7 = 0 K anharmonicity extends
to the TRA since we use HA as a reference for the temperature
mapping.

The computationally inexpensive nature of the TRA al-
lows us to systematically test size convergence. As shown
in Fig. 5(b), the internal energy for the 2 x 2 x 2 cell is not
well converged with respect to size. Taking the 4 x 4 x 4 cell
(which is size converged with respect to 5 x 5 x 5 within
1 meV /atom), we see that the absolute value and the temper-
ature dependence change, resulting in deviations of more than
6 meV. Thus, at high temperatures, the size convergence error
of the 2 x 2 x 2 cell is comparable to the error induced by
the TRA. Overall, at meV accuracy, the errors associated with
the TRA must be weighed against the need for size-converged
cells, which are inexpensive and easy to obtain with the TRA
compared to more expensive PIMC calculations. Next, we
turn to other physical properties to which the temperature map
can be applied. The temperature dependence of the lattice
parameter is shown in Fig. 6(a). We obtain excellent agree-
ment between the PIMC lattice parameters and those obtained
at the remapped temperatures. As with the internal energy,
Fig. 6(a) highlights the ability of the TRA to smoothly connect
the quantum-dominated regime to the classically dominated
regime in a single framework, resulting, like PIMC, in a lattice
parameter between the purely classical (high temperature) and
quasiharmonic (low temperature) representations.

We next calculate the isobaric heat capacity, a derived ther-
modynamic property which we estimate from the remapped
enthalpy H of the system, using the relation

“)

3H(Tc(T))>
oT NP

Cp(Ic(T)) = (

where H = U + PV. This quantity can also be calculated
directly from the enthalpy fluctuations of the system at the
remapped temperatures using the equation

olr —
SCHTE-HT) 1. )

Cp(Te(T)) = —
p(Ic(T)) ke1Z OT

The derivation of this equation is included in the Appendix.
The remapped heat capacities, along with those calculated
from classical MD, the QHA, Eq. (5), and the PIMC literature
values, are shown in Fig. 6(b). The size-converged 4 x 4 x 4
cell shows excellent agreement with low-temperature quasi-
harmonic and PIMC heat capacities and lies slightly closer
to the classical MD heat capacity at high temperatures than
the PIMC result. We thus conclude that the TRA allows us to
approximate NQEs for large (e.g., size converged) simulation
ensembles and that it works very well for obtaining derived
thermodynamic quantities like the heat capacity with nuclear
quantum effects directly from MD simulations.

C. Diamond cubic Si

We next look at bulk diamond cubic Si and compare results
from the TRA to those computed by Ramirez and Herrero [34]
and Noya et al. [35] using PIMC simulations.

The internal energies from the QHA, MD, and the TRA
are shown in Fig. 5(c). The TRA, PIMC, and the QHA agree
almost perfectly on this scale. Figure 5(d) shows the differ-
ences with respect to PIMC as well as the cell size dependence
of the internal energy. As can be seen, when using the same
cell size (2 x 2 x 2 cell), the TRA internal energy agrees with
the PIMC internal energy, showing only tiny deviations on
the order of 1 meV. These deviations are substantially smaller
than the already small errors observed for C. The reason why
C shows larger deviations is the significantly higher classical
temperature (823 K) compared to Si (274 K) to optimally
describe zero-point vibrations. The higher this temperature is,
the more the system will probe the anharmonic contributions
of the potential energy surface. Thus, for C,even at T = 0 K,
the zero-point energy contains anharmonic contributions that
are not captured by the harmonic approximation, which is
used as a reference for the TRA.

Like for C, we see that the errors due to size convergence
are comparable in magnitude to those introduced by the TRA
and that size convergence errors become larger at higher
temperatures. This reinforces our conclusion that accuracy
must be considered holistically, including not only inherent
approximations but also the constraints that methodologies
may impose on parameters like system size.

We also study the thermal lattice expansion of Si. While
the TRA underestimates the temperature-dependent lattice
parameters slightly when compared to the PIMC result at
low temperatures, we obtain good convergence with the high-
temperature MD lattice parameters, as can be seen in Fig. 6(c).
The slight remaining deviation of the PIMC lattice parameters
from the MD result at high temperatures is likely related to
the fact that the Monte Carlo simulations do not accurately
capture system size variations. This expectation is based on
the agreement of our MD lattice parameters with MD lit-
erature values [46] for the same potential [see blue squares
in Fig. 6(c)]. Finally, as with C, we obtain the isobaric heat
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FIG. 7. Results for Al: (a) lattice parameters, (b) internal energy,

(c) heat capacity, and (d) Gibbs free energy dependence as a function

of temperature from the QHA (solid orange line), MD (solid blue

line), and TRA (solid/dashed black line); (e) the difference in Gibbs
free energies between the reference [QHA (dashed orange line)/MD

(dashed blue line)] and the TRA on a meV scale. (f)—(j) The same as

(a)—(e), but for Mg. (f) also includes the temperature dependence of

the c/a ratio (dotted lines).

capacity as a function of temperature using Eqs. (4) and (5).
From Fig. 6(d), we see excellent agreement between the TRA
and PIMC heat capacities. As before, the TRA accurately
follows the trend in PIMC to sit between QHA and purely
classical results.

D. Metals: Al (fcc) and Mg (hep)

Having shown that the TRA gives results that agree well
with those from PIMC studies, we use the TRA to calculate
properties of bulk metals, in particular Al and Mg, for which
we are not aware of any PI studies in the literature. The results
are shown in Fig. 7.

For Al [Fig. 7(a)], the TRA lattice parameter agrees
with the QHA to within milliangstroms, even though the

temperature map is constructed purely in the harmonic limit
and no explicit information regarding volume expansion is
included. For Mg [Fig. 7(f)], the agreement is similar, and we
again see the trend of a smooth connection between the quan-
tum and classical regimes. Unlike the other materials studied
here, Mg has the added complication of two independent lat-
tice constants. Despite this additional degree of freedom in the
atomic structure, the second lattice parameter, indicated by the
c/a ratio, follows the same qualitative quantum-to-classical
trend as the lattice parameters from the cubic systems.

Figures 7(b) and 7(c) show that for Al, the desired behav-
ior is obtained for the internal energy and the isobaric heat
capacity: In both cases, the TRA accurately and smoothly
connects the low-temperature quantum region with the high-
temperature classical region. We further use the isobaric heat
capacity to compute the Gibbs free energy using the relation
G=H+TS, where H=U (because we consider a zero-
pressure system) and the entropy S is given by

T
S(T) = f Sear’. (6)
0

Additionally, we also add the center of mass correction de-
scribed in Ref. [45]. The TRA Gibbs free energy, together
with the ones computed using the QHA and fully classical
TIL, is shown in Fig. 7(d). We observe that the TRA Gibbs
free energy curve smoothly transitions from agreement with
the QHA free energy to agreement with free energy from TIL.
Deviations from the corresponding low- and high-temperature
references are within about 7 meV/atom, as can be seen in
Fig. 7(e).

For Mg, very similar trends are observed for the internal
energy [Fig. 7(g)], isobaric heat capacity [Fig. 7(h)], and the
Gibbs free energy [Figs. 7(i) and 7(j)].

E. Phase transitions: fcc to bee Ca

Finally, we consider Ca, which shows a prominent struc-
tural phase transformation from fcc at low temperatures to
bce at high temperatures. A set of results similar to those
obtained for Al and Mg is shown in Fig. 8 for the fcc and
bee phases. Qualitatively, the same trends as observed for the
other species are found. For the potential that we use [42],
classical TI simulations predict a phase transition from the fcc
to the bee phase at 347 K, as can be seen in Fig. 9(a).

Note that the exact value of the transition temperature is
highly sensitive to even minute changes in the Gibbs free
energies of the two phases: A difference of 1 meV between
the Gibbs free energies of the two competing phases shifts the
transition temperature by about 30 K. Because of this sensi-
tivity, even small changes in the relative free energies arising
from NQEs may play a significant role. Our calculations show
excellent agreement with the QHA difference in free energies
at very low temperatures and, like before, gradually become
more classical with increasing temperature. With the TRA,
we predict a phase transition temperature of ~311 K, slightly
below the purely classical result of ~347 K but significantly
above the QHA prediction of 221 K. Due to the nature of
the empirical potential used, none of the transition temper-
atures obtained from the QHA, TI, and the TRA accurately
reflect the experimental transition temperature (716 K) or
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(a)—(e), but for bce Ca.

the ab initio transition temperature obtained by Grabowski
et al. (=1115 K) [5]. However, this example highlights the
importance of including NQEs even at elevated temperatures
and demonstrates how these effects can be inexpensively es-
timated and included in such temperature-sensitive properties
using the TRA.

IV. CONCLUSIONS

In the present study, we have systematically explored the
suitability and performance of the TRA to accurately describe
NQEs and anharmonicity from 7 = 0 K over the entire tem-
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FIG. 9. (a) Gibbs free energies of the fcc (solid blue line) and bee
(solid yellow line) phases from the TRA, with the predicted transition
temperature (*311 K) at the vertical line (solid black line). (b) Ca
fce-bec transition temperatures predicted by the QHA (solid yellow
line, 221 K), TI (solid blue line, ~347 K), and the TRA (black
dashed line).

perature range. An easy-to-obtain temperature map was used
which was constructed in the harmonic limit from the relation
between the internal energy of quantum oscillators and classi-
cal oscillators that best represent those quantum oscillators.
This map was then applied to material properties obtained
from classical MD simulations to obtain the same properties
but with NQEs at negligible extra computational effort. The
TRA accurately reproduced the low-temperature quantum
harmonic and high-temperature classical anharmonic limits.
Systematic comparisons with available PIMC data for C and
Si, which can be regarded as a gold standard, demonstrated
that the TRA can describe the temperature dependence of
key material properties over the entire relevant temperature
range. We then applied the TRA to various bulk metals for
which PIMC literature data are unavailable. We found that
NQEs have an effect even at higher temperatures and should
be included when computing temperature-dependent material
properties like heat capacity and free energy, which in turn
are used to predict other important properties such as phase
transitions.

The fundamental concept of temperature remapping can
be straightforwardly extended to chemically more complex
systems relevant in materials science such as binary, ternary,
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and multicomponent alloys. A prominent use case would be
the calculation of Gibbs free energies of these material sys-
tems, needed as an input for CALPHAD (CALculation of
PHAse Diagrams)-based approaches to construct bulk phase
diagrams.

A scenario in which a computationally inexpensive ap-
proach like the TRA can break is when the system under
consideration has multiple inequivalent bonds with very dif-
ferent strengths, molecular crystals, and crystals containing
light nuclei or other defects. In these systems, in which two or
more principal frequencies can exist, an approach based on a
single Einstein mode reaches its limits, and a careful analysis
of the vibrational response becomes mandatory. Extensions
in the spirit of a colored noise thermostat, which allows con-
trol of individual frequency modes, would be an interesting
option to explore, with applications for bulk metal or alloy
structures with defects, whose quantum approximated ther-
modynamic properties can be used to construct defect phase
diagrams [47].
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APPENDIX: DERIVATION OF ISOBARIC HEAT CAPACITY
FROM ENTHALPY FLUCTUATIONS

The energy (enthalpy) of a canonical ensemble at a temper-
ature 7 fluctuates randomly about a fixed mean value H that
can be expressed as

I 1 0Zs(T
T = 3 pHT) =~ g; ),

(AD)

where Z¢ is the canonical partition function and g = 1/kgT .
The isobaric heat capacity Cp at the remapped temperature
Te(T) can be obtained by substituting Eq. (A1) in Eq. (4) and
using the chain rule:

oty <3H(TC)) _ 0pr 0H(To)
N,P

T aT 9Pz,

13 (1) 1 0°Zc(Tp)
kg OT \Tc )| Zc(Te) B3

L (azaTc)ﬂ
Ze(Te)* \ 9Bz,

1 0T -
= < [— > piHATe) + H(ch}

“hiZ T

1 90Tc

- = 2 _—2
= kelZ 9T [H(Tc)* —H(Te) 1.

(A2)

[1] M. Born and E. Brody, Z. Phys. 6, 132 (1921).

[2] R. E. Allen and F. W. de Wette, Phys. Rev. 179, 873
(1969).

[3] L. L. Boyer, Phys. Rev. Lett. 42, 584 (1979).

[4] D. Frenkel and B. Smit, in Understanding Molecular Simula-
tion, 2nd ed., edited by D. Frenkel and B. Smit (Academic, San
Diego, 2002), pp. 63-107.

[5] B. Grabowski, P. Soderlind, T. Hickel, and J. Neugebauer, Phys.
Rev. B 84, 214107 (2011).

[6] B. Grabowski, L. Ismer, T. Hickel, and J. Neugebauer, Phys.
Rev. B 79, 134106 (2009).

[7] A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Phys.
Rev. X 4,011018 (2014).

[8] A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Phys.
Rev. Lett. 114, 195901 (2015).

[9] A. L Duff, T. Davey, D. Korbmacher, A. Glensk, B. Grabowski,
J. Neugebauer, and M. W. Finnis, Phys. Rev. B 91, 214311
(2015).

[10] X. Zhang, B. Grabowski, F. Kérmann, C. Freysoldt, and J.
Neugebauer, Phys. Rev. B 95, 165126 (2017).

[11] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

[12] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path
Integrals, edited by D. F. Syter (Dover, Mineola, 2010).

[13] D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078
(1981).

[14] T. E. Markland and M. Ceriotti, Nat. Rev. Chem. 2, 0109
(2018).

[15] C.Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev. B 42, 11276
(1990).

[16] Y. H. Lee, R. Biswas, C. M. Soukoulis, C. Z. Wang, C. T. Chan,
and K. M. Ho, Phys. Rev. B 43, 6573 (1991).

[17] J. Michalski, Phys. Rev. B 45, 7054 (1992).

[18] P. Heino and E. Ristolainen, Microelectron. J. 34, 773 (2003).

[19] Z. Zhong, X. Wang, and J. Xu, Numer. Heat Transfer, Part B
46, 429 (2004).

[20] P. Heino, Phys. Scr. T114, 171 (2004).

[21] P. Heino, Phys. Rev. B 71, 144302 (2005).

[22] H. Wang and W. Chu, J. Alloys Compd. 485, 488 (2009).

[23] H. Wang, W. Chu, Y. Guo, and H. Jin, Chin. Phys. B 19, 076501
(2010).

[24] J. Shiomi, K. Esfarjani, and G. Chen, Phys. Rev. B 84, 104302
(2011).

[25] A. V. Savin, Y. A. Kosevich, and A. Cantarero, Phys. Rev. B 86,
064305 (2012).

[26] W. Xu, A. P. Horsfield, D. Wearing, and P. D. Lee, Comput.
Mater. Sci. 144, 36 (2018).

[27] M. Ceriotti, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 103,
030603 (2009).

[28] M. Ceriotti, M. Parrinello, T. E. Markland, and D. E.
Manolopoulos, J. Chem. Phys. 133, 124104 (2010).

[29] M. Ceriotti, D. E. Manolopoulos, and M. Parrinello, J. Chem.
Phys. 134, 084104 (2011).

[30] A.P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G.

184111-9


https://doi.org/10.1007/BF01327972
https://doi.org/10.1103/PhysRev.179.873
https://doi.org/10.1103/PhysRevLett.42.584
https://doi.org/10.1103/PhysRevB.84.214107
https://doi.org/10.1103/PhysRevB.79.134106
https://doi.org/10.1103/PhysRevX.4.011018
https://doi.org/10.1103/PhysRevLett.114.195901
https://doi.org/10.1103/PhysRevB.91.214311
https://doi.org/10.1103/PhysRevB.95.165126
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1063/1.441588
https://doi.org/10.1038/s41570-017-0109
https://doi.org/10.1103/PhysRevB.42.11276
https://doi.org/10.1103/PhysRevB.43.6573
https://doi.org/10.1103/PhysRevB.45.7054
https://doi.org/10.1016/S0026-2692(03)00149-6
https://doi.org/10.1080/10407790490487514
https://doi.org/10.1088/0031-8949/2004/T114/043
https://doi.org/10.1103/PhysRevB.71.144302
https://doi.org/10.1016/j.jallcom.2009.05.146
https://doi.org/10.1088/1674-1056/19/7/076501
https://doi.org/10.1103/PhysRevB.84.104302
https://doi.org/10.1103/PhysRevB.86.064305
https://doi.org/10.1016/j.commatsci.2017.12.001
https://doi.org/10.1103/PhysRevLett.103.030603
https://doi.org/10.1063/1.3489925
https://doi.org/10.1063/1.3556661

DSOUZA, HUBER, GRABOWSKI, AND NEUGEBAUER

PHYSICAL REVIEW B 105, 184111 (2022)

Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C.
Trott, and S. J. Plimpton, Comput. Phys. Commun. 271, 108171
(2022).

[31] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).

[32] J. Janssen, S. Surendralal, Y. Lysogorskiy, M. Todorova, T.
Hickel, R. Drautz, and J. Neugebauer, Comput. Mater. Sci. 163,
24 (2019).

[33] C. P. Herrero and R. Ramirez, Phys. Rev. B 63, 024103
(2000).

[34] R. Ramirez and C. P. Herrero, Phys. Rev. B 48, 14659 (1993).

[35] J. C. Noya, C. P. Herrero, and R. Ramirez, Phys. Rev. B 53,
9869 (1996).

[36] A. Rohatgi, Webplotdigitizer, Version 4.5 (2021), https:/
automeris.io/WebPlotDigitizer.

[37] J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).

[38] F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

[39] M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

[40] M. Mendelev, M. Kramer, C. Becker, and M. Asta, Philos. Mag.
88, 1723 (2008).

[41] D. Y. Sun, M. I. Mendelev, C. A. Becker, K. Kudin, T.
Haxhimali, M. Asta, J. J. Hoyt, A. Karma, and D. J. Srolovitz,
Phys. Rev. B 73, 024116 (2006).

[42] H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W.
Chen, Phys. Rev. B 83, 134118 (2011).

[43] L.-F. Zhu, J. Janssen, S. Ishibashi, F. Kérmann, B. Grabowski,
and J. Neugebauer, Comput. Mater. Sci. 187, 110065 (2021).

[44] R. Freitas, M. Asta, and M. de Koning, Comput. Mater. Sci.
112, 333 (2016).

[45] B. Cheng and M. Ceriotti, Phys. Rev. B 97, 054102 (2018).

[46] H. Nejat Pishkenari, E. Mohagheghian, and A. Rasouli, Phys.
Lett. A 380, 4039 (2016).

[47] S. Korte-Kerzel, T. Hickel, L. Huber, D. Raabe, S. Sandlobes-
Haut, M. Todorova, and J. Neugebauer, Int. Mater. Rev. 67, 89
(2022).

184111-10


https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.commatsci.2018.07.043
https://doi.org/10.1103/PhysRevB.63.024103
https://doi.org/10.1103/PhysRevB.48.14659
https://doi.org/10.1103/PhysRevB.53.9869
https://automeris.io/WebPlotDigitizer
https://doi.org/10.1103/PhysRevLett.61.2879
https://doi.org/10.1103/PhysRevB.31.5262
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1080/14786430802206482
https://doi.org/10.1103/PhysRevB.73.024116
https://doi.org/10.1103/PhysRevB.83.134118
https://doi.org/10.1016/j.commatsci.2020.110065
https://doi.org/10.1016/j.commatsci.2015.10.050
https://doi.org/10.1103/PhysRevB.97.054102
https://doi.org/10.1016/j.physleta.2016.08.027
https://doi.org/10.1080/09506608.2021.1930734

