8,797 research outputs found

    Infra-red fixed points in supersymmetry

    Get PDF
    Model independent constraints on supersymmetric models emerge when certain couplings are drawn towards their infra-red (quasi) fixed points in the course of their renormalization group evolution. The general principles are first reviewed and the conclusions for some recent studies of theories with R-parity and baryon and lepton number violations are summarized.Comment: 5 pages Latex with 2 figures embedded as eps files Talk given at WHEPP6, Chennai, India, January 3-15, 2000, to appear in special issue of Praman

    Interplay between field-induced and frustration-induced quantum criticalities in the frustrated two-leg Heisenberg ladder

    Full text link
    The antiferromagnetic Heisenberg two-leg ladder in the presence of frustration and an external magnetic field is a system that is characterized by two sorts of quantum criticalities, not only one. One criticality is the consequence of intrinsic frustration, and the other one is a result of the external magnetic field. So the behaviour of each of them in the presence of the other deserves to be studied. Using the Jordan-Wigner transformation in dimensions higher than one and bond-mean-field theory we examine the interplay between the field-induced and frustration-induced quantum criticalities in this system. The present work could constitute a prototype for those systems showing multiple, perhaps sometimes competing, quantum criticalities. We calculate several physical quantities like the magnetization and spin susceptibility as functions of field and temperature.Comment: 9 pages, 8 figures, submitted to the Canadian Journal of Physic

    Field-Induced Transition in the S=1 Antiferromagnetic Chain with Single-Ion Anisotropy in a Transverse Magnetic Field

    Full text link
    The field-induced transition in one-dimensional S=1 Heisenberg antiferromagnet with single-ion anisotropy in the presence of a transverse magnetic field is obtained on the basis of the Schwinger boson mean-field theory. The behaviors of the specific heat and susceptibility as functions of temperature as well as the applied transverse field are explored, which are found to be different from the results obtained under a longitudinal field. The anomalies of the specific heat at low temperatures, which might be an indicative of a field-induced transition from a Luttinger liquid phase to an ordered phase, are explicitly uncovered under the transverse field. A schematic phase diagram is proposed. The theoretical results are compared with experimental observations.Comment: Revtex, 7 figure

    On entanglement evolution across defects in critical chains

    Get PDF
    We consider a local quench where two free-fermion half-chains are coupled via a defect. We show that the logarithmic increase of the entanglement entropy is governed by the same effective central charge which appears in the ground-state properties and which is known exactly. For unequal initial filling of the half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde

    Haldane-gap chains in a magnetic field

    Full text link
    We consider quasi one dimensional spin-1 Heisenberg chains with crystal field anisotropy in a uniform magnetic field. We determine the dynamical structure factor in various limits and obtain a fairly complete qualitative picture of how it changes with the applied field. In particular, we discuss how the width of the higher energy single magnon modes depends on the field. We consider the effects of a weak interchain coupling. We discuss the relevance of our results for recent neutron scattering experiments on the quasi-1D Haldane-gap compound NDMAP.Comment: 34 pages, 7 figure

    Topological Inflation with Multiple Winding

    Get PDF
    We analyze the core dynamics of critically coupled, superheavy gauge vortices in the (2+1) dimensional Einstein-Abelian-Higgs system. By numerically solving the Eistein and field equations for various values of the symmetry breaking scale, we identify the regime in which static solutions cease to exist and topological inflation begins. We explicitly include the topological winding of the vortices into the calculation and extract the dependence on the winding of the critical scale separating the static and inflating regimes. Extrapolation of our results suggests that topological inflation might occur within high winding strings formed at the Grand Unified scale.Comment: 13 pages, 4 figures, RevTe

    Infrared Fixed Point Structure in Minimal Supersymmetric Standard Model with Baryon and Lepton Number Violation

    Get PDF
    We study in detail the renomalization group evolution of Yukawa couplings and soft supersymmetry breaking trilinear couplings in the minimal supersymmetric standard model with baryon and lepton number violation. We obtain the exact solutions of these equations in a closed form, and then depict the infrared fixed point structure of the third generation Yukawa couplings and the highest generation baryon and lepton number violating couplings. Approximate analytical solutions for these Yukawa couplings and baryon and lepton number violating couplings, and the soft supersymmetry breaking couplings are obtained in terms of their initial values at the unification scale. We then numerically study the infrared fixed surfaces of the model, and illustrate the approach to the fixed points.Comment: 16 pages REVTeX, figures embedded as epsfigs, replaced with version to appear in Physical Review D, minor typographical errors eliminated and references reordered, figures correcte

    Collective responses of Bi-2212 stacked junction to 100 GHz microwave radiation under magnetic field oriented along the c-axis

    Full text link
    We studied a response of Bi-2212 mesa type structures to 100 GHz microwave radiation. We found that applying magnetic field of about 0.1 T across the layers enables to observe collective Shapiro step response corresponding to a synchronization of all 50 intrinsic Josephson junctions (IJJ) of the mesa. At high microwave power we observed up to 10th harmonics of the fundamental Shapiro step. Besides, we found microwave induced flux-flow step position of which is proportional to the square root of microwave power and that can exceed at high enough powers 1 THz operating frequency of IJJ oscillations.Comment: 11 pages including 5 figures, accepted for publication in JETP Letter

    Adventures in Thermal Duality (II): Towards a Duality-Covariant String Thermodynamics

    Full text link
    In a recent companion paper, we observed that the rules of ordinary thermodynamics generally fail to respect thermal duality, a symmetry of string theory under which the physics at temperature T is related to the physics at the inverse temperature 1/T. Even when the free energy and internal energy exhibit the thermal duality symmetry, the entropy and specific heat are defined in such a way that this symmetry is destroyed. In this paper, we propose a modification of the traditional definitions of these quantities, yielding a manifestly duality-covariant thermodynamics. At low temperatures, these modifications produce "corrections" to the standard definitions of entropy and specific heat which are suppressed by powers of the string scale. These corrections may nevertheless be important for the full development of a consistent string thermodynamics. We find, for example, that the string-corrected entropy can be smaller than the usual entropy at high temperatures, suggesting a possible connection with the holographic principle. We also discuss some outstanding theoretical issues prompted by our approach.Comment: 31 pages, 6 figures, 1 conversatio

    Singular Effects of Impurities near the Ferromagnetic Quantum-Critical Point

    Full text link
    Systematic theoretical results for the effects of a dilute concentration of magnetic impurities on the thermodynamic and transport properties in the region around the quantum critical point of a ferromagnetic transition are obtained. In the quasi-classical regime, the dynamical spin fluctuations enhance the Kondo temperature. This energy scale decreases rapidly in the quantum fluctuation regime, where the properties are those of a line of critical points of the multichannel Kondo problem with the number of channels increasing as the critical point is approached, except at unattainably low temperatures where a single channel wins out.Comment: 4 pages, 2 figure
    corecore