14,205 research outputs found

    Nuclear Corrections to Hyperfine Structure in Light Hydrogenic Atoms

    Full text link
    Hyperfine intervals in light hydrogenic atoms and ions are among the most accurately measured quantities in physics. The theory of QED corrections has recently advanced to the point that uncalculated terms for hydrogenic atoms and ions are probably smaller than 0.1 parts per million (ppm), and the experiments are even more accurate. The difference of the experiments and QED theory is interpreted as the effect on the hyperfine interaction of the (finite) nuclear charge and magnetization distributions, and this difference varies from tens to hundreds of ppm. We have calculated the dominant component of the 1s hyperfine interval for deuterium, tritium and singly ionized helium, using modern second-generation potentials to compute the nuclear component of the hyperfine splitting for the deuteron and the trinucleon systems. The calculated nuclear corrections are within 3% of the experimental values for deuterium and tritium, but are about 20% discrepant for singly ionized helium. The nuclear corrections for the trinucleon systems can be qualitatively understood by invoking SU(4) symmetry.Comment: 26 pages, 1 figure, latex - submitted to Physical Review

    Calculating the Rest Tension for a Polymer of String Bits

    Full text link
    We explore the application of approximation schemes from many body physics, including the Hartree-Fock method and random phase approximation (RPA), to the problem of analyzing the low energy excitations of a polymer chain made up of bosonic string bits. We accordingly obtain an expression for the rest tension T0T_0 of the bosonic relativistic string in terms of the parameters characterizing the microscopic string bit dynamics. We first derive an exact connection between the string tension and a certain correlation function of the many-body string bit system. This connection is made for an arbitrary interaction potential between string bits and relies on an exact dipole sum rule. We then review an earlier calculation by Goldstone of the low energy excitations of a polymer chain using RPA. We assess the accuracy of the RPA by calculating the first order corrections. For this purpose we specialize to the unique scale invariant potential, namely an attractive delta function potential in two (transverse) dimensions. We find that the corrections are large, and discuss a method for summing the large terms. The corrections to this improved RPA are roughly 15\%.Comment: 44 pages, phyzzx, psfig required, Univ. of Florida preprint, UFIFT-HEP-94

    Internet data packet transport: from global topology to local queueing dynamics

    Get PDF
    We study structural feature and evolution of the Internet at the autonomous systems level. Extracting relevant parameters for the growth dynamics of the Internet topology, we construct a toy model for the Internet evolution, which includes the ingredients of multiplicative stochastic evolution of nodes and edges and adaptive rewiring of edges. The model reproduces successfully structural features of the Internet at a fundamental level. We also introduce a quantity called the load as the capacity of node needed for handling the communication traffic and study its time-dependent behavior at the hubs across years. The load at hub increases with network size NN as N1.8\sim N^{1.8}. Finally, we study data packet traffic in the microscopic scale. The average delay time of data packets in a queueing system is calculated, in particular, when the number of arrival channels is scale-free. We show that when the number of arriving data packets follows a power law distribution, nλ\sim n^{-\lambda}, the queue length distribution decays as n1λn^{1-\lambda} and the average delay time at the hub diverges as N(3λ)/(γ1)\sim N^{(3-\lambda)/(\gamma-1)} in the NN \to \infty limit when 2<λ<32 < \lambda < 3, γ\gamma being the network degree exponent.Comment: 5 pages, 4 figures, submitted to International Journal of Bifurcation and Chao

    The Algebras of Large N Matrix Mechanics

    Get PDF
    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.Comment: 70 pages, expanded historical remark

    Minimal unitary representation of SU(2,2) and its deformations as massless conformal fields and their supersymmetric extensions

    Full text link
    We study the minimal unitary representation (minrep) of SO(4,2) over an Hilbert space of functions of three variables, obtained by quantizing its quasiconformal action on a five dimensional space. The minrep of SO(4,2), which coincides with the minrep of SU(2,2) similarly constructed, corresponds to a massless conformal scalar in four spacetime dimensions. There exists a one-parameter family of deformations of the minrep of SU(2,2). For positive (negative) integer values of the deformation parameter \zeta one obtains positive energy unitary irreducible representations corresponding to massless conformal fields transforming in (0,\zeta/2) ((-\zeta/2,0)) representation of the SL(2,C) subgroup. We construct the supersymmetric extensions of the minrep of SU(2,2) and its deformations to those of SU(2,2|N). The minimal unitary supermultiplet of SU(2,2|4), in the undeformed case, simply corresponds to the massless N=4 Yang-Mills supermultiplet in four dimensions. For each given non-zero integer value of \zeta, one obtains a unique supermultiplet of massless conformal fields of higher spin. For SU(2,2|4) these supermultiplets are simply the doubleton supermultiplets studied in arXiv:hep-th/9806042.Comment: Revised with an extended introduction and additional references. Typos corrected. 49 pages; Latex fil

    Exact averages of central values of triple product L-functions

    Get PDF
    We obtain exact formulas for central values of triple product L-functions averaged over newforms of weight 2 and prime level. We apply these formulas to non-vanishing problems. This paper uses a period formula for the triple product L-function proved by Gross and Kudla

    Perturbation Theory in Two Dimensional Open String Field Theory

    Full text link
    In this paper we develop the covariant string field theory approach to open 2d strings. Upon constructing the vertices, we apply the formalism to calculate the lowest order contributions to the 4- and 5- point tachyon--tachyon tree amplitudes. Our results are shown to match the `bulk' amplitude calculations of Bershadsky and Kutasov. In the present approach the pole structure of the amplitudes becomes manifest and their origin as coming from the higher string modes transparent.Comment: 26 page

    High Spin Gauge Fields and Two-Time Physics

    Get PDF
    All possible interactions of a point particle with background electromagnetic, gravitational and higher-spin fields is considered in the two-time physics worldline formalism in (d,2) dimensions. This system has a counterpart in a recent formulation of two-time physics in non-commutative field theory with local Sp(2) symmetry. In either the worldline or field theory formulation, a general Sp(2) algebraic constraint governs the interactions, and determines equations that the background fields of any spin must obey. The constraints are solved in the classical worldline formalism (h-bar=0 limit) as well as in the field theory formalism (all powers of h-bar). The solution in both cases coincide for a certain 2T to 1T holographic image which describes a relativistic particle interacting with background fields of any spin in (d-1,1) dimensions. Two disconnected branches of solutions exist, which seem to have a correspondence as massless states in string theory, one containing low spins in the zero Regge slope limit, and the other containing high spins in the infinite Regge slope limit.Comment: LaTeX 22 pages. Typos corrected in version

    Ratio of Tensions from Vacuum String Field Theory

    Full text link
    We show analytically that the ratio of the norm of sliver states agrees with the ratio of D-brane tensions. We find that the correct ratio appears as a twist anomaly.Comment: 13 pages, lanlmac; version to appear in JHE

    Difficulties in Inducing a Gauge Theory at Large N

    Get PDF
    It is argued that the recently proposed Kazakov-Migdal model of induced gauge theory, at large NN, involves only the zero area Wilson loops that are effectively trees in the gauge action induced by the scalars. This retains only a constant part of the gauge action excluding plaquettes or anything like them and the gauge variables drop out.Comment: 6 pages, Latex, AZPH-TH/93-01, COLO-HEP/30
    corecore