993 research outputs found
Audit Committees Oversight Of Information Technology Risk
This exploratory study examines the role of the audit committee in overseeing information technology (IT) risk. We address the degree of audit committee oversight of specific IT risks, as well as factors associated with variations in audit committee IT oversight. Based on responses from 39 audit committee members, we found (1) little audit committee emphasis on oversight of IT risks, (2) audit committees involved with IT oversight focus on more traditional risks (e.g., monitoring), while very little attention is devoted to IT acquisition and implementation, and (3) the amount of IT oversight is positively associated with the responding members auditing experience and prior familiarity with the COBIT model for assessing IT risks. Audit committee independence, diligence, and expertise, company size, and industry were not significantly associated with IT oversight
Design and Development of Stable, Water-soluble, Human Toll-like Receptor 2-Specific, Monoacyl Lipopeptides as Candidate Vaccine Adjuvants
Antigens in modern subunit vaccines are largely soluble and poorly immunogenic proteins inducing relatively short-lived immune responses. Appropriate adjuvants initiate early innate immune responses, amplifying subsequent adaptive immune responses. Agonists of TLR2 are devoid of significant pro-inflammatory activity in ex vivo human blood models, and yet potently adjuvantic, suggesting that this chemotype may be a safe and effective adjuvant. Our earlier work on the monoacyl lipopeptide class of TLR2 agonists led to the design of a highly potent lead, but with negligible aqueous solubility, necessitating the reintroduction of aqueous solubility. We explored several strategies of introducing ionizable groups on the lipopeptide, as well as the systematic evaluation of chemically stable bioisosteres of the ester-linked palmitoyl group. These studies have led to a fully optimized, chemically stable, and highly water-soluble, human TLR2-specific agonist, which was found to have an excellent safety profile and displayed prominent adjuvantic activities in rabbit models
Theory of optical spectra of polar quantum wells: Temperature effects
Theoretical and numerical calculations of the optical absorption spectra of
excitons interacting with longitudinal-optical phonons in quasi-2D polar
semiconductors are presented. In II-VI semiconductor quantum wells, exciton
binding energy can be tuned on- and off-resonance with the longitudinal-optical
phonon energy by varying the quantum well width. A comprehensive picture of
this tunning effect on the temperature-dependent exciton absorption spectrum is
derived, using the exciton Green's function formalism at finite temperature.
The effective exciton-phonon interaction is included in the Bethe-Salpeter
equation. Numerical results are illustrated for ZnSe-based quantum wells. At
low temperatures, both a single exciton peak as well as a continuum resonance
state are found in the optical absorption spectra. By contrast, at high enough
temperatures, a splitting of the exciton line due to the real phonon absorption
processes is predicted. Possible previous experimental observations of this
splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address:
[email protected]
and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties
(2212) single crystal samples
were studied using transmission electron microscopy (TEM), plane
() and axis () resistivity, and high resolution
angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that
the modulation in the axis for doped 2212 is dominantly
of type that is not sensitive to the oxygen content of the system, and the
system clearly shows a structure of orthorhombic symmetry. Oxygen annealed
samples exhibit a much lower axis resistivity and a resistivity minimum at
K. He-annealed samples exhibit a much higher axis resistivity and
behavior below 300K. The Fermi surface (FS) of oxygen annealed
2212 mapped out by ARUPS has a pocket in the FS around the
point and exhibits orthorhombic symmetry. There are flat, parallel sections of
the FS, about 60\% of the maximum possible along , and about 30\%
along . The wavevectors connecting the flat sections are about
along , and about along , rather than . The symmetry of the near-Fermi-energy dispersing
states in the normal state changes between oxygen-annealed and He-annealed
samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon
request. Submitted to Phys. Rev. B
Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit
We have investigated the lowest binding-energy electronic structure of the
model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy
(ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give
a comprehensive, self-consistent picture of the nature of the first
electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we
show a strong dependence on the polarization of the excitation light which is
understandable in the context of the matrix element governing the photoemission
process, which gives a state with the symmetry of a Zhang-Rice singlet.
Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice
singlet on the exciting photon-energy is shown to be consistent with
interference effects connected with the periodicity of the crystal structure in
the crystallographic c-direction. Thirdly, we measured the dispersion of the
first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being
controversial in the literature, and have shown that the data are best fitted
using an extended t-J-model, and extract the relevant model parameters. An
analysis of the spectral weight of the first ionization states for different
excitation energies within the approach used by Leung et al. (Phys. Rev. B56,
6320 (1997)) results in a strongly photon-energy dependent ratio between the
coherent and incoherent spectral weight. The possible reasons for this
observation and its physical implications are discussed.Comment: 10 pages, 8 figure
The impacts of climate change on sea temperature around the UK and Ireland
What is already happening?
• Sea surface temperature (SST) around the UK generally shows a significant warming trend of around 0.3C per decade over the last 40 years.
• Regional variations exist in this trend with surface warming being greatest across the southern North Sea and least across the north-west of the domain.
• Warm-season (Autumn) near-bottom temperatures have increased significantly across the southern North Sea over the last 30 years, but not across other regions of the domain.
• Compared to 1982–1998, the annual number of marine heatwaves increased around the British Isles by an average of four events per year in the period 2000–2016. Larger increases of up to six additional events per year occurred to the north of the British Isles. Smaller changes occurred to the south of the region
Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer
The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells
ARPES: A probe of electronic correlations
Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct
methods of studying the electronic structure of solids. By measuring the
kinetic energy and angular distribution of the electrons photoemitted from a
sample illuminated with sufficiently high-energy radiation, one can gain
information on both the energy and momentum of the electrons propagating inside
a material. This is of vital importance in elucidating the connection between
electronic, magnetic, and chemical structure of solids, in particular for those
complex systems which cannot be appropriately described within the
independent-particle picture. Among the various classes of complex systems, of
great interest are the transition metal oxides, which have been at the center
stage in condensed matter physics for the last four decades. Following a
general introduction to the topic, we will lay the theoretical basis needed to
understand the pivotal role of ARPES in the study of such systems. After a
brief overview on the state-of-the-art capabilities of the technique, we will
review some of the most interesting and relevant case studies of the novel
physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental
Techniques", edited by A. Avella and F. Mancini, Springer Series in
Solid-State Sciences (2013). A high-resolution version can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf.
arXiv admin note: text overlap with arXiv:cond-mat/0307085,
arXiv:cond-mat/020850
Ocean heat convergence and North Atlantic multidecadal heat content variability
We construct an upper ocean (0-1000m) North Atlantic heat budget (26°-67°N) for the period 1950-2020 using multiple observational datasets and an eddy-permitting global ocean model. On multidecadal timescales ocean heat transport convergence controls ocean heat content (OHC) tendency in most regions of the North Atlantic with little role for diffusive processes. In the subpolar North Atlantic (45°N-67°N) heat transport convergence is explained by geostrophic currents whereas ageostrophic currents make a significant contribution in the subtropics (26°N-45°N). The geostrophic contribution in all regions is dominated by anomalous advection across the time-mean temperature gradient although other processes make a significant contribution particularly in the subtropics. The timescale and spatial distribution of the anomalous geostrophic currents are consistent with a simple model of basin scale thermal Rossby waves propagating westwards/northwestwards in the subpolar gyre and multidecadal variations in regional OHC are explained by geostrophic currents periodically coming into alignment with the mean temperature gradient as the Rossby wave passes through. The global ocean model simulation shows that multidecadal variations in the Atlantic Meridional Overturning Circulation are synchronized with the ocean heat transport convergence consistent with modulation of the west-east pressure gradient by the propagating Rossby wave
Recommended from our members
Historical simulations with HadGEM3-GC3.1 for CMIP6
We describe and evaluate historical simulations which use the third Hadley Centre Global Environment Model in the Global Coupled configuration 3.1 (HadGEM3-GC3.1) model and which form part of the UK's contribution to the sixth Coupled Model Intercomparison Project, CMIP6. These simulations, run at two resolutions, respond to historically evolving forcings such as greenhouse gases, aerosols, solar irradiance, volcanic aerosols, land use, and ozone concentrations. We assess the response of the simulations to these historical forcings and compare against the observational record. This includes the evolution of global mean surface temperature, ocean heat content, sea ice extent, ice sheet mass balance, permafrost extent, snow cover, North Atlantic sea surface temperature and circulation, and decadal precipitation. We find that the simulated time evolution of global mean surface temperature broadly follows the observed record but with important quantitative differences which we find are most likely attributable to strong effective radiative forcing from anthropogenic aerosols and a weak pattern of sea surface temperature response in the low to middle latitudes to volcanic eruptions. We also find evidence that anthropogenic aerosol forcings play a role in driving the Atlantic Multidecadal Variability and the Atlantic Meridional Overturning Circulation, which are key features of the North Atlantic ocean. Overall, the model historical simulations show many features in common with the observed record over the period 1850–2014 and so provide a basis for future in-depth study of recent climate change
- …