5,262 research outputs found

    Interference, Coulomb blockade, and the identification of non-abelian quantum Hall states

    Full text link
    We examine the relation between different electronic transport phenomena in a Fabry-Perot interferometer in the fractional quantum Hall regime. In particular, we study the way these phenomena reflect the statistics of quantum Hall quasi-particles. For two series of states we examine, one abelian and one non-abelian, we show that the information that may be obtained from measurements of the lowest order interference pattern in an open Fabry-Perot interferometer is identical to the one that may be obtained from the temperature dependence of Coulomb blockade peaks in a closed interferometer. We argue that despite the similarity between the experimental signatures of the two series of states, interference and Coulomb blockade measurements are likely to be able to distinguish between abelian and non-abelian states, due to the sensitivity of the abelian states to local perturbations, to which the non-abelian states are insensitive.Comment: 10 pages. Published versio

    Screening of electrostatic potential in a composite fermion system

    Full text link
    Screening of the electric field of a test charge by monolayer and double-layer composite fermion systems is considered. It is shown that the electric field of the test charge is partly screened at distances much large then the magnetic length. The value of screening as a function of the distance depends considerably on the filling factor. The effect of variation of the value of screening in the double-layer system upon a transition to a state described by the Halperin wave function is determined.Comment: 5 pages, 2 eps figures include

    Exact Groundstates of Rotating Bose Gases close to a Feshbach Resonance

    Full text link
    We study the groundstates of rotating Bose gases when interactions are affected by a nearby Feshbach resonance. We show that exact groundstates at high angular momentum can be found analytically for a general and realistic model for the resonant interactions. We identify parameter regimes where the exact groundstates are exotic fractional quantum Hall states, the excitations of which obey non-abelian exchange statistics.Comment: 4 page

    Transport equations for a two-dimensional electron gas with spin-orbit interaction

    Get PDF
    The transport equations for a two-dimensional electron gas with spin-orbit interaction are presented. The distribution function is a 2x2-matrix in the spin space. Particle and energy conservation laws determine the expressions for the electric current and the energy flow. The derived transport equations are applied to the spin-splitting of a wave packed and to the calculation of the structure factor and the dynamic conductivity.Comment: 6 pages, 1 figure, revised versio

    s-wave Cooper pair insulators and theory of correlated superconductors

    Full text link
    The pseudogap state of cuprate high-temperature superconductors has been often viewed as either a yet unknown competing order or a precursor state to superconductivity. While awaiting the resolution of the pseudogap problem in cuprates, we demonstrate that local pairing fluctuations, vortex liquid dynamics and other precursor phenomena can emerge quite generally whenever fermionic excitations remain gapped across the superconducting transition, regardless of the gap origin. Our choice of a tractable model is a lattice band insulator with short-range attractive interactions between fermions in the s-wave channel. An effective crossover between Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein condensate (BEC) regimes can be identified in any band insulator above two dimensions, while in two dimensions only the BEC regime exists. The superconducting transition is "unconventional" (non-pair-breaking) in the BEC regime, identified by either the bosonic mean-field or XY universality class. The insulator adjacent to the superconductor in the BEC regime is a bosonic Mott insulator of Cooper pairs, which may be susceptible to charge density wave ordering. We construct a function of the many-body excitation spectrum whose non-analytic changes define a sharp distinction between band and Mott insulators. The corresponding "second order transition" can be observed out of equilibrium by driving a Cooper pair laser in the Mott insulator. We explicitly show that the gap for charged bosonic excitations lies below the threshold for Cooper pair breakup in any BEC regime, despite quantum fluctuations. Our discussion ends with a view of possible consequences for cuprates, where antinodal pair dynamics has certain features in common with our simple s-wave picture.Comment: 18 pages, 4 figures, published versio

    Quantum quenches in a spinor condensate

    Full text link
    We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wavevector, or the `light-cone' correlations familiar from relativistic theories, depending on the endpoint of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long time dynamics again depends on the endpoint, conserving the order parameter in zero field, but not at finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler \emph{et al.}Comment: Published versio

    Entanglement Spectrum and Entanglement Thermodynamics of Quantum Hall Bilayers at nu=1

    Get PDF
    We study the entanglement spectra of bilayer quantum Hall systems at total filling factor nu=1. In the interlayer-coherent phase at layer separations smaller than a critical value, the entanglement spectra show a striking similarity to the energy spectra of the corresponding monolayer systems around half filling. The transition to the incoherent phase can be followed in terms of low-lying entanglement levels. Finally, we describe the connection between those two types of spectra in terms of an effective temperature leading to relations for the entanglement entropy which are in full analogy to canonical thermodynamics.Comment: New findings in Eqs.(5)-(8) and pertaining discussion, and addendum to the title, version as publishe
    corecore