646 research outputs found

    A Study of Snippet Length and Informativeness: Behaviour, Performance and User Experience

    Get PDF
    The design and presentation of a Search Engine Results Page (SERP) has been subject to much research. With many contemporary aspects of the SERP now under scrutiny, work still remains in investigating more traditional SERP components, such as the result summary. Prior studies have examined a variety of different aspects of result summaries, but in this paper we investigate the influence of result summary length on search behaviour, performance and user experience. To this end, we designed and conducted a within-subjects experiment using the TREC AQUAINT news collection with 53 participants. Using Kullback-Leibler distance as a measure of information gain, we examined result summaries of different lengths and selected four conditions where the change in information gain was the greatest: (i) title only; (ii) title plus one snippet; (iii) title plus two snippets; and (iv) title plus four snippets. Findings show that participants broadly preferred longer result summaries, as they were perceived to be more informative. However, their performance in terms of correctly identifying relevant documents was similar across all four conditions. Furthermore, while the participants felt that longer summaries were more informative, empirical observations suggest otherwise; while participants were more likely to click on relevant items given longer summaries, they also were more likely to click on non-relevant items. This shows that longer is not necessarily better, though participants perceived that to be the case - and second, they reveal a positive relationship between the length and informativeness of summaries and their attractiveness (i.e. clickthrough rates). These findings show that there are tensions between perception and performance when designing result summaries that need to be taken into account

    The Energy of the Gamma Metric in the M{\o}ller Prescription

    Get PDF
    We obtain the energy distribution of the gamma metric using the energy-momentum complex of M{\o}ller. The result is the same as obtained by Virbhadra in the Weinberg prescription

    Influence of Adrenergic Drugs Upon Vital Organ Perfusion During CPR

    Get PDF
    To determine whether adrenergic drugs administered during cardiopulmonary resuscitation (CPR) alter the distribution of artificial card:l.ac output, we measu red regional blood flow and cardiac output using radioactive microspheres in 12 dogs. Ventricular fibrillation was induced electrically and CPR was immediately begun with a mechanical chest compressor and ventilator (Thurn per ( R) ) at 60 compressions/min, with a ventilation:compression ratio of 1:5, a compression duration of 0.5 sec, and a ventilation pressure of 20 em H 2 o. Compression force was sufficient to develop 40-50 mmHg peak intraesophageal pressure. After 30 sec of CPR, either 0.9% saline vehicle or 50 ug/kg of epinephrine, phenylephrine, or isoproterenol was administered through a central venous catheter. One minute later, microspheres were injected into the left ventricle. After 250 sec of CPR the ventricles were defibrillated electrically. Twenty minute recovery periods were interposed between each drug injection. accord:l.ng Each dog recei.ved to predetermlned all three drugs and saline sequence. Following saline, epinephrine, phenylephrine, and isoproterenol treatment respectively, cardiac output averaged 392, 319, 255, and 475 ml/min; bratn blood flow averaged 37, 54, 2 9 \u27 and 28 ml/min; heart blood flow averaged 25, 79, 26, and IS ml/min; and kidney blood flow averaged 44, 4, 16, and 29 ml/min. Epinephrine improved blood flow t6 the brain, probably because of its alpha adrenergic activity. Epinephrine improved blood flow to the heart during CPR much more than the other agents, probably because of its combined alpha and beta adrenergic activity. This effect may explain its superiority in restoring circulation after prolonged arrest and resuscitation. Isoproterenol should not be used in CPR because it shunts blood away from vital organs

    Exterior and interior metrics with quadrupole moment

    Full text link
    We present the Ernst potential and the line element of an exact solution of Einstein's vacuum field equations that contains as arbitrary parameters the total mass, the angular momentum, and the quadrupole moment of a rotating mass distribution. We show that in the limiting case of slowly rotating and slightly deformed configuration, there exists a coordinate transformation that relates the exact solution with the approximate Hartle solution. It is shown that this approximate solution can be smoothly matched with an interior perfect fluid solution with physically reasonable properties. This opens the possibility of considering the quadrupole moment as an additional physical degree of freedom that could be used to search for a realistic exact solution, representing both the interior and exterior gravitational field generated by a self-gravitating axisymmetric distribution of mass of perfect fluid in stationary rotation.Comment: Latex, 15 pages, 3 figures, final versio

    Superposition of Weyl solutions: The equilibrium forces

    Full text link
    Solutions to the Einstein equation that represent the superposition of static isolated bodies with axially symmetry are presented. The equations nonlinearity yields singular structures (strut and membranes) to equilibrate the bodies. The force on the strut like singularities is computed for a variety of situations. The superposition of a ring and a particle is studied in some detailComment: 31 pages, 7 figures, psbox macro. Submitted to Classical and Quantum Gravit

    Time and "angular" dependent backgrounds from stationary axisymmetric solutions

    Full text link
    Backgrounds depending on time and on "angular" variable, namely polarized and unpolarized S1Ă—S2S^1 \times S^2 Gowdy models, are generated as the sector inside the horizons of the manifold corresponding to axisymmetric solutions. As is known, an analytical continuation of ordinary DD-branes, iDiD-branes allows one to find SS-brane solutions. Simple models have been constructed by means of analytic continuation of the Schwarzchild and the Kerr metrics. The possibility of studying the ii-Gowdy models obtained here is outlined with an eye toward seeing if they could represent some kind of generalized SS-branes depending not only on time but also on an ``angular'' variable.Comment: 24 pages, 5 figures, corrected typos, references adde

    Surface Layers in General Relativity and Their Relation to Surface Tensions

    Full text link
    For a thin shell, the intrinsic 3-pressure will be shown to be analogous to -A, where A is the classical surface tension: First, interior and exterior Schwarzschild solutions will be matched together such that the surface layer generated at the common boundary has no gravitational mass; then its intrinsic 3-pressure represents a surface tension fulfilling Kelvin's relation between mean curvature and pressure difference in the Newtonian limit. Second, after a suitable definition of mean curvature, the general relativistic analogue to Kelvin's relation will be proven to be contained in the equation of motion of the surface layer.Comment: 12 pages, LaTeX, no figur

    Relativistic Static Thin Disks: The Counter-Rotating Model

    Get PDF
    A detailed study of the Counter-Rotating Model (CRM) for generic finite static axially symmetric thin disks with nonzero radial pressure is presented. We find a general constraint over the counter-rotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counter-rotating perfect fluids. We also found expressions for the energy density and pressure of the counter-rotating fluids. Then we shown that, in general, there is not possible to take the two counter-rotating fluids as circulating along geodesics neither take the two counter-rotating tangential velocities as equal and opposite. An specific example is studied where we obtain some CRM with well defined counter-rotating tangential velocities and stable against radial perturbations. The CRM obtained are in agree with the strong energy condition, but there are regions of the disks with negative energy density, in violation of the weak energy condition.Comment: 19 pages, 6 figures. Submitted to Physical Review

    Open-Retrieval Conversational Question Answering

    Full text link
    Conversational search is one of the ultimate goals of information retrieval. Recent research approaches conversational search by simplified settings of response ranking and conversational question answering, where an answer is either selected from a given candidate set or extracted from a given passage. These simplifications neglect the fundamental role of retrieval in conversational search. To address this limitation, we introduce an open-retrieval conversational question answering (ORConvQA) setting, where we learn to retrieve evidence from a large collection before extracting answers, as a further step towards building functional conversational search systems. We create a dataset, OR-QuAC, to facilitate research on ORConvQA. We build an end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on Transformers. Our extensive experiments on OR-QuAC demonstrate that a learnable retriever is crucial for ORConvQA. We further show that our system can make a substantial improvement when we enable history modeling in all system components. Moreover, we show that the reranker component contributes to the model performance by providing a regularization effect. Finally, further in-depth analyses are performed to provide new insights into ORConvQA.Comment: Accepted to SIGIR'2

    Decay of isolated surface features driven by the Gibbs-Thomson effect in analytic model and simulation

    Full text link
    A theory based on the thermodynamic Gibbs-Thomson relation is presented which provides the framework for understanding the time evolution of isolated nanoscale features (i.e., islands and pits) on surfaces. Two limiting cases are predicted, in which either diffusion or interface transfer is the limiting process. These cases correspond to similar regimes considered in previous works addressing the Ostwald ripening of ensembles of features. A third possible limiting case is noted for the special geometry of "stacked" islands. In these limiting cases, isolated features are predicted to decay in size with a power law scaling in time: A is proportional to (t0-t)^n, where A is the area of the feature, t0 is the time at which the feature disappears, and n=2/3 or 1. The constant of proportionality is related to parameters describing both the kinetic and equilibrium properties of the surface. A continuous time Monte Carlo simulation is used to test the application of this theory to generic surfaces with atomic scale features. A new method is described to obtain macroscopic kinetic parameters describing interfaces in such simulations. Simulation and analytic theory are compared directly, using measurements of the simulation to determine the constants of the analytic theory. Agreement between the two is very good over a range of surface parameters, suggesting that the analytic theory properly captures the necessary physics. It is anticipated that the simulation will be useful in modeling complex surface geometries often seen in experiments on physical surfaces, for which application of the analytic model is not straightforward.Comment: RevTeX (with .bbl file), 25 pages, 7 figures from 9 Postscript files embedded using epsf. Submitted to Phys. Rev. B A few minor changes made on 9/24/9
    • …
    corecore