We present the Ernst potential and the line element of an exact solution of
Einstein's vacuum field equations that contains as arbitrary parameters the
total mass, the angular momentum, and the quadrupole moment of a rotating mass
distribution. We show that in the limiting case of slowly rotating and slightly
deformed configuration, there exists a coordinate transformation that relates
the exact solution with the approximate Hartle solution. It is shown that this
approximate solution can be smoothly matched with an interior perfect fluid
solution with physically reasonable properties. This opens the possibility of
considering the quadrupole moment as an additional physical degree of freedom
that could be used to search for a realistic exact solution, representing both
the interior and exterior gravitational field generated by a self-gravitating
axisymmetric distribution of mass of perfect fluid in stationary rotation.Comment: Latex, 15 pages, 3 figures, final versio