14,031 research outputs found

    Oxidation of basaltic tephras: Influence on reflectance in the 1 micron region

    Get PDF
    As part of a ongoing study into the products of hydrovolcanism, tuffs were examined from the Cerro Colorado and Pavant Butte tuff cones. The former resides in the northeastern corner of the Pinacate Volcanic Field in Sonara, Mexico and the latter is in the Black Rock Desert of southern Utah. Numerous samples were collected and many of these had their Vis/IR reflectance measured. It seems likely that in the palagonite tuffs there is a combination of nanocrystalline ferric oxide phases contributing to the UV absorption edge, but not to the 1 micron band, plus more crystalline ferric oxides which do contribute to that band as well as ferrous iron within unaltered sideromelane which is skewing the band center to longer wavelengths. This work has implications for the study of Mars. The present work indicates that when ferrous and ferric iron phases are both present, their combined spectral contribution is a single band in the vicinity of 1 micron. The center, depth, and width of that feature has potential to be used to gauge the relative proportions of ferrous and ferric iron phases

    Studies of nucleotide sequences in TMV-RNA. II - The action of spleen diesterase

    Get PDF
    Spleen diesterase action on polynucleotide and ribonucleic acid infectivit

    Predicting the effectiveness of hepatitis C virus neutralizing antibodies by bioinformatic analysis of conserved epitope residues using public sequence data

    Get PDF
    Hepatitis C virus (HCV) is a global health issue. Although direct-acting antivirals are available to target HCV, there is currently no vaccine. The diversity of the virus is a major obstacle to HCV vaccine development. One approach toward a vaccine is to utilize a strategy to elicit broadly neutralizing antibodies (bNAbs) that target highly-conserved epitopes. The conserved epitopes of bNAbs have been mapped almost exclusively to the E2 glycoprotein. In this study, we have used HCV-GLUE, a bioinformatics resource for HCV sequence data, to investigate the major epitopes targeted by well-characterized bNAbs. Here, we analyze the level of conservation of each epitope by genotype and subtype and consider the most promising bNAbs identified to date for further study as potential vaccine leads. For the most conserved epitopes, we also identify the most prevalent sequence variants in the circulating HCV population. We examine the distribution of E2 sequence data from across the globe and highlight regions with no coverage. Genotype 1 is the most prevalent genotype worldwide, but in many regions, it is not the dominant genotype. We find that the sequence conservation data is very encouraging; several bNAbs have a high level of conservation across all genotypes suggesting that it may be unnecessary to tailor vaccines according to the geographical distribution of genotypes

    An Analysis of the Outer Continental Shelf Lands Act Amendments of 1978

    Get PDF

    In Memoriam: Abraham Dash

    Get PDF

    Ultrastructural visualization of cytoskeletal mRNAs and their associated proteins using double-label in situ hybridization

    Get PDF
    We have been able to visualize cytoskeletal messenger RNA molecules at high resolution using nonisotopic in situ hybridization followed by whole-mount electron microscopy. Biotinated cDNA probes for actin, tubulin, or vimentin mRNAs were hybridized to Triton-extracted chicken embryo fibroblasts and myoblasts. The cells were then exposed to antibodies against biotin followed by colloidal gold-conjugated antibodies and then critical-point dried. Identification of mRNA was possible using a probe fragmented to small sizes such that hybridization of several probe fragments along the mRNA was detected as a string of colloidal gold particles qualitatively and quantitatively distinguishable from nonspecific background. Extensive analysis showed that when eight gold particles were seen in this iterated array, the signal to noise ratio was greater than 30:1. Furthermore, these gold particles were colinear, often spiral, or circular suggesting detection of a single nucleic acid molecule. Antibodies against actin, vimentin, or tubulin proteins were used after in situ hybridization, allowing simultaneous detection of the protein and its cognate message on the same sample. This revealed that cytoskeletal mRNAs are likely to be extremely close to actin protein (5 nm or less) and unlikely to be within 20 nm of vimentin or tubulin filaments. Actin mRNA was found to be more predominant in lamellipodia of motile cells, confirming previous results. These results indicate that this high resolution in situ hybridization approach is a powerful tool by which to investigate the association of mRNA with the cytoskeleton

    Influence of material deprivation on clinical outcomes among people living with HIV in high-income countries: a systematic review and meta-analysis

    Get PDF
    Despite developments in HIV treatment and care, disparities persist with some not fully benefiting from improvements in the HIV care continuum. We conducted a systematic review to explore associations between social determinants and HIV treatment outcomes (viral suppression and treatment adherence) in high-income countries. A random effects meta-analysis was performed where there were consistent measurements of exposures. We identified 83 observational studies eligible for inclusion. Social determinants linked to material deprivation were identified as education, employment, food security, housing, income, poverty/deprivation, socioeconomic status/position, and social class; however, their measurement and definition varied across studies. Our review suggests a social gradient of health persists in the HIV care continuum; people living with HIV who reported material deprivation were less likely to be virologically suppressed or adherent to antiretrovirals. Future research should use an ecosocial approach to explore these interactions across the lifecourse to help propose a causal pathway

    Classification of the LCVF AVIRIS test site with a Kohonen artificial neural network

    Get PDF
    We present a classification of an AVIRIS spectral image of the Lunar Crater Volcanic Field (LCVF). Geologic mapping from such data is made possible by distinctive mineral signatures: absorption features and the shape of the spectral continuum. The subtle spectral shape differences between some of the geological units in this scene along with the high dimensionality of the spectral presents a challenging pattern recognition task. We found an artificial neural network powerful in separating 13 geological units based on the full spectral resolution. The LCVF, in northern Nye County, Nevada, was the primary focus of the NASA-sponsored Geologic Remote Sensing Field Experiment in the summer of 1989. It consists of over 100 square miles of Quaternary basaltic pyroclastic and flow deposits. These deposits lie atop ignimbrites and silicic lava flows of Tertiary age and in turn are overlain by Quaternary alluvial and playa deposits. This AVIRIS image was collected on September 29, 1989 at 11:44 at 11:44 PDT. The 256-by-256 pixel subsection in this study contains oxidized basaltic cinder deposits, the southern half of the Lunar Lake playa, and outcrops of the Rhyollite of Big Sand Spring Valley. Vegetation in LCVF is sparse, but locally abundant within washes and near springs

    How do liquids confined at the nanoscale influence adhesion?

    Full text link
    Liquids play an important role in adhesion and sliding friction. They behave as lubricants in human bodies especially in the joints. However, in many biological attachment systems they acts like adhesives, e.g. facilitating insects to move on ceilings or vertical walls. Here we use molecular dynamics to study how liquids confined at the nanoscale influence the adhesion between solid bodies with smooth and rough surfaces. We show that a monolayer of liquid may strongly affect the adhesion.Comment: 5 pages, 9 color figures. Some figures are in Postscript Level 3 format. Minimal changes with respect to the previous version. Added doi and reference to the published article also inside the pape

    Magnetic friction due to vortex fluctuation

    Full text link
    We use Monte Carlo and molecular dynamics simulation to study a magnetic tip-sample interaction. Our interest is to understand the mechanism of heat dissipation when the forces involved in the system are magnetic in essence. We consider a magnetic crystalline substrate composed of several layers interacting magnetically with a tip. The set is put thermally in equilibrium at temperature T by using a numerical Monte Carlo technique. By using that configuration we study its dynamical evolution by integrating numerically the equations of motion. Our results suggests that the heat dissipation in this system is closed related to the appearing of vortices in the sample.Comment: 6 pages, 41 figure
    corecore