2,182 research outputs found

    Aero-acoustic tests of duct-burning turbofan exhaust nozzles

    Get PDF
    The acoustic and aerodynamic characteristics of several exhaust systems suitable for duct burning turbofan engines are evaluated. Scale models representing unsuppressed coannular exhaust systems are examined statically under varying exhaust conditions. Ejectors with both hardwall and acoustically treated inserts are investigated

    Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles

    Get PDF
    The effect of forward flight on the jet noise of coannular exhaust nozzles, suitable for Variable Stream Control Engines (VSCE), was investigated in a series of wind tunnel tests. The primary stream properties were maintained constant at 300 mps and 394 K. A total of 230 acoustic data points was obtained. Force measurement tests using an unheated air supply covered the same range of tunnel speeds and nozzle pressure ratios on each of the nozzle configurations. A total of 80 points was taken. The coannular nozzle OASPL and PNL noise reductions observed statically relative to synthesized values were basically retained under simulated flight conditions. The effect of fan to primary stream area ratio on flight effects was minor. At take-off speed, the peak jet noise for a VSCE was estimated to be over 6 PNdB lower than the static noise level. High static thrust coefficients were obtained for the basic coannular nozzles, with a decay of 0.75 percent at take-off speeds

    Flight effects on the aero/acoustic characteristics of inverted profile coannular nozzles

    Get PDF
    The effect of simulated flight speed on the acoustic and aerodynamic characteristics of coannular nozzles is examined. The noise and aerodynamic performance of the coannular nozzle exhaust systems over a large range of operating flight conditions is presented. The jet noise levels of the coannular nozzles are discussed. The impact of fan to primary nozzle area ratio and the presence of an ejector on flight effects are investigated. The impact of flight speed on the individual components of the coannular jet noise was ascertained

    Aerodynamic and acoustic tests of duct-burning turbofan exhaust nozzles

    Get PDF
    The static aerodynamic and acoustic characteristics of duct-burning turbofan (DBTF) exhaust nozzles are established. Scale models, having a total area equivalent to a 0.127 m diameter convergent nozzle, simulating unsuppressed coannular nozzles and mechanically suppressed nozzles with and without ejectors (hardwall and acoustically treated) were tested in a quiescent environment. The ratio of fan to primary area was varied from 0.75 to 1.2. Far field acoustic data, perceived noise levels, and thrust measurements were obtained for 417 test conditions. Pressure ratios were varied from 1.3 to 4.1 in the fan stream and from 1.53 to 2.5 in the primary stream. Total temperature varied from 395 to 1090 K in both streams. Jet noise reductions relative to synthesized prediction from 8 PNdB (with the unsuppressed coannular nozzle) to 15 PNdB (with a mechanically suppressed configuration) were observed at conditions typical of engines being considered under the Advanced Supersonic Technology program. The inherent suppression characteristic of the unsuppressed coannular nozzle is related to the rapid mixing in the jet wake caused by the velocity profiles associated with the DBTF. Since this can be achieved without a mechanical suppressor, significant reductions in aircraft weight or noise footprint can be realized

    Can Life develop in the expanded habitable zones around Red Giant Stars?

    Full text link
    We present some new ideas about the possibility of life developing around sub-giant and red giant stars. Our study concerns the temporal evolution of the habitable zone. The distance between the star and the habitable zone, as well as its width, increases with time as a consequence of stellar evolution. The habitable zone moves outward after the star leaves the main sequence, sweeping a wider range of distances from the star until the star reaches the tip of the asymptotic giant branch. If life could form and evolve over time intervals from 5×1085 \times 10^8 to 10910^9 years, then there could be habitable planets with life around red giant stars. For a 1 M_{\odot} star at the first stages of its post main-sequence evolution, the temporal transit of the habitable zone is estimated to be of several 109^9 years at 2 AU and around 108^8 years at 9 AU. Under these circumstances life could develop at distances in the range 2-9 AU in the environment of sub-giant or giant stars and in the far distant future in the environment of our own Solar System. After a star completes its first ascent along the Red Giant Branch and the He flash takes place, there is an additional stable period of quiescent He core burning during which there is another opportunity for life to develop. For a 1 M_{\odot} star there is an additional 10910^9 years with a stable habitable zone in the region from 7 to 22 AU. Space astronomy missions, such as proposed for the Terrestrial Planet Finder (TPF) and Darwin should also consider the environments of sub-giants and red giant stars as potentially interesting sites for understanding the development of life

    Generalized pseudo-Newtonian potential for studying accretion disk dynamics in off-equatorial planes around rotating black holes: Description of a vector potential

    Full text link
    We prescribe a pseudo-Newtonian vector potential for studying accretion disks around Kerr black holes. The potential is useful to study the inner properties of disk not confined to the equatorial plane where general relativistic effect is indispensable. Therefore, we incorporate the essential properties of the metric at the inner radii through the pseudo-Newtonian potential derived from the general Kerr spacetime. The potential, reproducing most of the salient features of the general-relativity, is valid for entire regime of Kerr parameter. It reproduces the last stable circular orbit exactly as that in the Kerr geometry. It also reproduces last bound orbit and energy at last stable circular orbit with a maximum error ~7% and ~15% respectively upto an orbital inclination 30 degree.Comment: 22 AASTeX pages including 5 postscript figures; Accepted for publication in The Astrophysical Journa

    On Form Factors in nested Bethe Ansatz systems

    Full text link
    We investigate form factors of local operators in the multi-component Quantum Non-linear Schr\"odinger model, a prototype theory solvable by the so-called nested Bethe Ansatz. We determine the analytic properties of the infinite volume form factors using the coordinate Bethe Ansatz solution and we establish a connection with the finite volume matrix elements. In the two-component models we derive a set of recursion relations for the "magnonic form factors", which are the matrix elements on the nested Bethe Ansatz states. In certain simple cases (involving states with only one spin-impurity) we obtain explicit solutions for the recursion relations.Comment: 34 pages, v2 (minor modifications

    Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    Get PDF
    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed

    Employee Stock Ownership and Financial Performance in European Countries: The Moderating Effects of Uncertainty Avoidance and Social Trust

    Get PDF
    This study investigates how the effect of employee stock ownership on financial performance may hinge on the diverse cultural and societal contexts of European countries. Based on agency and national culture theories, we hypothesize that the positive relationship between employee stock ownership and return on assets (ROA) is stronger in those nations with lower uncertainty avoidance and higher social trust. Using a multisource, time‐lagged, large‐scale dataset of 1,741 firms from 21 countries in Europe, our multilevel, random coefficient modeling analysis found evidence for these hypotheses, suggesting that uncertainty avoidance and social trust serve as important contextual cues in predicting the linkage between employee stock ownership and financial performance. Our supplemental analysis with distinction between the managerial and nonmanagerial employee stock ownership further indicates managerial employee stock ownership has a direct positive effect on ROA. Although nonmanagerial employee stock ownership had a nonsignificant association with ROA, the relationship was positive and significant when uncertainty avoidance was low and social trust was high. This research contributes to the existing literature by illuminating some of the contextual influences altering the effectiveness of employee stock ownership. Our findings also offer practical suggestions for effectively using employee stock ownership
    corecore