966 research outputs found

    Tumor Susceptibility Gene 101 (TSG101) Is a Novel Binding-Partner for the Class II Rab11-FIPs

    Get PDF
    The Rab11-FIPs (Rab11-family interacting proteins; henceforth, FIPs) are a family of Rab11a/Rab11b/Rab25 GTPase effector proteins implicated in an assortment of intracellular trafficking processes. Through proteomic screening, we have identified TSG101 (tumor susceptibility gene 101), a component of the ESCRT-I (endosomal sorting complex required for transport) complex, as a novel FIP4-binding protein, which we find can also bind FIP3. We show that α-helical coiled-coil regions of both TSG101 and FIP4 mediate the interaction with the cognate protein, and that point mutations in the coiled-coil regions of both TSG101 and FIP4 abrogate the interaction. We find that expression of TSG101 and FIP4 mutants cause cytokinesis defects, but that the TSG101-FIP4 interaction is not required for localisation of TSG101 to the midbody/Flemming body during abscission. Together, these data suggest functional overlap between Rab11-controlled processes and components of the ESCRT pathway

    The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars

    Get PDF
    Noachian-aged Jezero crater is the only known location on Mars where clear orbital detections of carbonates are found in close proximity to clear fluvio-lacustrine features indicating the past presence of a paleolake; however, it is unclear whether or not the carbonates in Jezero are related to the lacustrine activity. This distinction is critical for evaluating the astrobiological potential of the site, as lacustrine carbonates on Earth are capable of preserving biosignatures at scales that may be detectable by a landed mission like the Mars 2020 rover, which is planned to land in Jezero in February 2021. In this study, we conduct a detailed investigation of the mineralogical and morphological properties of geological units within Jezero crater in order to better constrain the origin of carbonates in the basin and their timing relative to fluvio-lacustrine activity. Using orbital visible/near-infrared hyperspectral images from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) along with high resolution imagery and digital elevation models, we identify a distinct carbonate-bearing unit, the “Marginal Carbonates,” located along the inner margin of the crater, near the largest inlet valley and the western delta. Based on their strong carbonate signatures, topographic properties, and location in the crater, we propose that this unit may preserve authigenic lacustrine carbonates, precipitated in the near-shore environment of the Jezero paleolake. Comparison to carbonate deposits from terrestrial closed basin lakes suggests that if the Marginal Carbonates are lacustrine in origin, they could preserve macro- and microscopic biosignatures in microbialite rocks like stromatolites, some of which would likely be detectable by Mars 2020. The Marginal Carbonates may represent just one phase of a complex fluvio-lacustrine history in Jezero crater, as we find that the spectral diversity of the fluvio-lacustrine deposits in the crater is consistent with a long-lived lake system cataloging the deposition and erosion of regional geologic units. Thus, Jezero crater may contain a unique record of the evolution of surface environments, climates, and habitability on early Mars

    Weathering in the Forelands of Two Rapidly Retreating Alpine Glaciers of Volcanic Bedrock in the Three Sisters, Oregon, USA

    Get PDF
    The glaciers of the Three Sisters volcanoes in Cascadia have retreated dramatically over the past century. In order to understand ongoing chemical weathering and solute transport in the proglacial valleys, waters were sampled from glacier outwash streams, local snowmelt, and proglacial springs and lakes at Collier and Diller Glaciers. To understand weathering and transport processes in the proglacial plains, infrared orbital remote sensing data was used to map compositional variability and highlight weathering products, which were then ground-truthed with laboratory mineralogical and chemical analyses of sediments. The hydrochemistry is significantly affected by a sub- and proglacial mafic weathering system lacking carbonate minerals. Here we report major ion concentrations in meltwaters for the summer 2016 and 2017 melt seasons. Total cation concentrations range from 3 to 250 eq/l and dissolved bicarbonate concentrations range from 2 to 200 eq/l. Other dissolved anions are negligible compared to bicarbonate. Dissolved silica concentrations range from 2 to 260 mol/l, comparable to total dissolved cation concentrations. The highest cation and silica concentrations were measured in moraine-sourced springs. Compositional remote sensing analysis identified alteration zones in the proglacial plains at both Collier and Diller indicating potential hydrated silica. This analysis is consistent with laboratory analysis of sediment samples, which indicate the presence of poorly crystalline phases weathering products, including hydrated silica. Weathered materials are preferentially deposited on moraines due to aeolian and glacial transport, as well as intra-moraine alteration, and at abandoned stream terraces due to fluvial transport. Geochemical measurements indicate that the predominant form of chemical weathering in these periglacial mafic systems is the carbonation of feldspar as well as reactive volcanic glass. The presence of poorly crystalline silicates, as indicated by remote sensing datasets and laboratory analysis, is consistent with rapid weathering of feldspars and glass and formation of Fe-Al-Si-bearing mineraloids in these proglacial valleys. This weathering regime has wide-ranging implications for atmospheric CO2 drawdown due to cold-climate volcanic rock weathering

    Silica Dissolution and Precipitation in Galciated Volcanic Environments and Implications for Mars

    Get PDF
    The surface of Mars exhibits strong evidence for a widespread and long-lived cryosphere. Observations of the surface have identified phases produced by water-rock interactions, but the contribution of glaciers to the observed alteration mineralogy is unclear. To characterize the chemical alteration expected on an icy early Mars, we collected water and rock samples from terrestrial glaciated volcanics. We related geochemical measurements of meltwater to the mineralogy and chemistry of proglacial rock coatings. In these terrains, water is dominated by dissolved silica relative to other dissolved cations, particularly at mafic sites. Rock coatings associated with glacial striations on mafic boulders include a silica-rich component, indicating that silica precipitation is occurring in the subglacial environment. We propose that glacial alteration of volcanic bedrock is dominated by a combination of high rates of silica dissolution and precipitation of opaline silica. On Mars, cryosphere-driven chemical weathering could be the origin of observed silica-enriched phases

    Complex fabric development revealed by englacial seismic reflectivity: Jakobshavn Isbræ, Greenland

    Get PDF
    This is the published version. Copyright 2008 American Geophysical Union. All Rights Reserved.High-resolution reflection seismic data from Jakobshavn Isbræ, Greenland, reveal complex fabric development. Abundant englacial reflectivity occurs for approximately half the thickness of the ice (the lower half), and disruption of the englacial reflectors occurs in the lower 10–15% of the ice-thickness. These depths correspond to the higher impurity-content, and more easily deformed, ice from the Younger Dryas and Last Glacial Maximum to Stage-3. We conclude that the reflectivity results from contrasting seismic velocities due to changes in the crystal orientation fabric of the ice, and suggest that these fabric changes are caused by variations in impurity loading and subsequent deformation history. These findings emphasize the difference between ice-divide and ice-stream crystal orientation fabrics and have implications for predictive ice sheet modeling

    The nature of the continuum limit in the 2D RP2RP^2 gauge model

    Get PDF
    The RP(2) gauge model is studied in 2D. We use Monte-Carlo renormalization techniques for blocking the mean spin-spin interaction, , and the mean gauge field plaquette, . The presence of the O(3) renormalized trajectory is verified and is consistent with the known three-loop beta-function. The first-order `vorticity' transition observed by Solomon et al. is confirmed, and the location of the terminating critical point is established. New scaling flows in (,) are observed associated with a large exponent kappa in the range 4~5. The scaling flows give rise to a strong cross-over effect between regions of high and low vorticity and are likely to induce an apparent signal for scaling in the cross-over region which we propose explains the scaling observed for RP(2), RP(3) and SO(4)-matrix models. The signal for this `pseudo' scaling will occur for the RP(2) spin model in the cross-over region which is the region in which computer simulations are done. We find that the RP(2) spin model is in the same universality class as the O(3) spin model but that it is likely to require a very large correlation length before the true scaling of this class sets in. We conjecture that the scaling flows are due either to the influence of a nearby new renormalized trajectory or to the ghost of the Kosterlitz-Thouless trajectory in the associated XY model.Comment: 29 pages, LATEX2e, 10 figures, uses styles[epsfig,latexsym
    • …
    corecore