24 research outputs found

    Can bounded and self-interested agents be teammates? Application to planning in ad hoc teams

    Get PDF
    Planning for ad hoc teamwork is challenging because it involves agents collaborating without any prior coordination or communication. The focus is on principled methods for a single agent to cooperate with others. This motivates investigating the ad hoc teamwork problem in the context of self-interested decision-making frameworks. Agents engaged in individual decision making in multiagent settings face the task of having to reason about other agents’ actions, which may in turn involve reasoning about others. An established approximation that operationalizes this approach is to bound the infinite nesting from below by introducing level 0 models. For the purposes of this study, individual, self-interested decision making in multiagent settings is modeled using interactive dynamic influence diagrams (I-DID). These are graphical models with the benefit that they naturally offer a factored representation of the problem, allowing agents to ascribe dynamic models to others and reason about them. We demonstrate that an implication of bounded, finitely-nested reasoning by a self-interested agent is that we may not obtain optimal team solutions in cooperative settings, if it is part of a team. We address this limitation by including models at level 0 whose solutions involve reinforcement learning. We show how the learning is integrated into planning in the context of I-DIDs. This facilitates optimal teammate behavior, and we demonstrate its applicability to ad hoc teamwork on several problem domains and configurations

    Motion planning for kinematic stratified systems with application to quasi-static legged locomotion and finger gaiting

    No full text

    Mechanics and Control of Biomimetic Locomotion

    No full text
    Biomimetic locomotion refers to the movement of robotic mechanisms in ways that are analogous to the patterns of movement found in nature. This paper reviews progress towards the development of more unifying principles for the analysis and control of biomimetic robotic locomotion

    Mechanics and Control of Biomimetic Locomotion

    No full text
    Biomimetic locomotion refers to the movement of robotic mechanisms in ways that are analogous to the patterns of movement found in nature. This paper reviews progress towards the development of more unifying principles for the analysis and control of biomimetic robotic locomotion

    Decidability of Robot Manipulation Planning: Three Disks in the Plane

    No full text
    This paper considers the problem of planning collision-free motion of three disks in the plane. One of the three disks, the robot, can autonomously translate in the plane, the other two move only when in contact with the robot. This represents the abstract formulation of a manipulation planning problem. Despite the simplicity of the formulation, the decidability of the problem had remained unproven so far. We prove that the problem is decidable, i.e., there exists an exact algorithm that decides wether a solution exists in nite time

    Non-decoupled Locomotion and Manipulation Planning for Low-Dimensional Systems

    No full text
    International audienceWe demonstrate the possibility of solving planning problems by inter-leaving locomotion and manipulation in a non-decoupled way. We choose three low-dimensional minimalistic robotic systems and use them to illustrate our paradigm: a basic one-legged locomotor, a two-link manipulator with a manipulated object, and a simultaneous locomotion-and-manipulation system. Using existing motion planning and control methods initially designed for either locomotion or manipulation tasks, we see how they apply to both our locomotion-only and manipulation-only systems through parallel derivations, and extend them to the simultaneous locomotion-and-manipulation system. Motion planning is solved for these three systems using two different methods : (i) a geometric path-planning-based one, and (ii) a kinematic control-theoretic-based one. Motion control is then derived by dynamically realizing the geometric paths or kinematic trajectories under the Couloumb friction model using torques as control inputs. All three methods apply successfully to all three systems, showing that the non-decoupled planning is possible
    corecore