173 research outputs found
Microspectroscopy and Imaging in the THz Range Using Coherent CW Radiation
A novel THz near-field spectrometer is presented which allows to perform
biological and medical studies with high spectral resolution combined with a
spatial resolution down to l/100. In the setup an aperture much smaller than
the used wavelength is placed in the beam very close to the sample. The sample
is probed by the evanescent wave behind the aperture. The distance is measured
extremely accurate by a confocal microscope. We use monochromatic sources which
provide powerful coherent cw radiation tuneable from 50 GHz up to 1.5 THz.
Transmission and reflection experiments can be performed which enable us to
study solids and molecules in aqueous solution. Examples for spectroscopic
investigations on biological tissues are presented.Comment: 4 pages, 5 figures, email: [email protected]
Commutators, Lefschetz fibrations and the signatures of surface bundles
We construct examples of Lefschetz fibrations with prescribed singular
fibers. By taking differences of pairs of such fibrations with the same
singular fibers, we obtain new examples of surface bundles over surfaces with
non-zero signature. From these we derive new upper bounds for the minimal genus
of a surface representing a given element in the second homology of a mapping
class group.Comment: 20 pages, 7 figures, accepted for publication in Topolog
New Dimensions for Wound Strings: The Modular Transformation of Geometry to Topology
We show, using a theorem of Milnor and Margulis, that string theory on
compact negatively curved spaces grows new effective dimensions as the space
shrinks, generalizing and contextualizing the results in hep-th/0510044.
Milnor's theorem relates negative sectional curvature on a compact Riemannian
manifold to exponential growth of its fundamental group, which translates in
string theory to a higher effective central charge arising from winding
strings. This exponential density of winding modes is related by modular
invariance to the infrared small perturbation spectrum. Using self-consistent
approximations valid at large radius, we analyze this correspondence explicitly
in a broad set of time-dependent solutions, finding precise agreement between
the effective central charge and the corresponding infrared small perturbation
spectrum. This indicates a basic relation between geometry, topology, and
dimensionality in string theory.Comment: 28 pages, harvmac big. v2: references and KITP preprint number added,
minor change
Comment on Mie Scattering from a Sonoluminescing Bubble with High Spatial and Temporal Resolution [Physical Review E 61, 5253 (2000)]
A key parameter underlying the existence of sonoluminescence (SL)is the time
relative to SL at which acoustic energy is radiated from the collapsed bubble.
Light scattering is one route to this quantity. We disagree with the statement
of Gompf and Pecha that -highly compressed water causes the minimum in
scattered light to occur 700ps before SL- and that this effect leads to an
overestimate of the bubble wall velocity. We discuss potential artifacts in
their experimental arrangement and correct their description of previous
experiments on Mie scattering.Comment: 10 pages, 2 figure
Exotic smooth structures on 4-manifolds with zero signature
For every integer , we construct infinite families of mutually
nondiffeomorphic irreducible smooth structures on the topological -manifolds
and (2k-1)(\CP#\CPb), the connected sums of
copies of and \CP#\CPb.Comment: 6 page
Exotic Smooth Structures on Small 4-Manifolds
Let M be either CP^2#3CP^2bar or 3CP^2#5CP^2bar. We construct the first
example of a simply-connected symplectic 4-manifold that is homeomorphic but
not diffeomorphic to M.Comment: 11 page
Fake R^4's, Einstein Spaces and Seiberg-Witten Monopole Equations
We discuss the possible relevance of some recent mathematical results and
techniques on four-manifolds to physics. We first suggest that the existence of
uncountably many R^4's with non-equivalent smooth structures, a mathematical
phenomenon unique to four dimensions, may be responsible for the observed
four-dimensionality of spacetime. We then point out the remarkable fact that
self-dual gauge fields and Weyl spinors can live on a manifold of Euclidean
signature without affecting the metric. As a specific example, we consider
solutions of the Seiberg-Witten Monopole Equations in which the U(1) fields are
covariantly constant, the monopole Weyl spinor has only a single constant
component, and the 4-manifold M_4 is a product of two Riemann surfaces
Sigma_{p_1} and Sigma_{p_2}. There are p_{1}-1(p_{2}-1) magnetic(electric)
vortices on \Sigma_{p_1}(\Sigma_{p_2}), with p_1 + p_2 \geq 2 (p_1=p_2= 1 being
excluded). When the two genuses are equal, the electromagnetic fields are
self-dual and one obtains the Einstein space \Sigma_p x \Sigma_p, the monopole
condensate serving as the cosmological constant.Comment: 9 pages, Talk at the Second Gursey Memorial Conference, June 2000,
Istanbu
Advancing Translational Space Research Through Biospecimen Sharing: Amplifying the Impact of Ground-Based Studies
Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hind limb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth. In this presentation, we will report on biospecimens currently being acquired from HHC Award Head-Down Tilt as a Model for Intracranial and Intraocular Pressures, and Retinal Changes during Spaceflight, and their availability. The BSP add-on to the project described herein has already yielded for HHC-funded investigators more than 4,700 additional tissues that would otherwise have been discarded as waste, with additional tissues available for analysis. Young (3-mo old) male and female rats and Older (9-mo old) male rats are being exposed to HLU for either 7, 14, 28, or 90 days. Additional groups are exposed to 90 days of unloading followed by either 7, 14, 28 days or 90 days of recovery (normal loading). Comparisons are made with non-suspended controls. Unused tissues are: Skin, Lungs, Thymus, Adrenals, Kidneys, Spleen, Hindlimb Muscles (Soleus, Extensor Digitorum Longus, Tibialis Anterior, Plantaris Gastrocnemius), Fat Pads, Reproductive Organs, and Intestines. Tissues are harvested, weighed, preserved then archived (with metadata) using a sample tracking system (CryoTrack). Preservation techniques include snap-freezing and RNALatersnap-freezing. Specimens were weighed at the time of dissection, and organ mass: body mass ratios analyzed to determine unloading effects across conditions and durations. The results corroborate previously reported effects of short-term exposure to microgravity or unloading exposure on various organs, and provide new insights into adaptation to long-duration unloading relevant to sustained spaceflight exposures on ISS. Supported by the Human Research Program (HRP) Human Health Countermeasures (HHC) Element and NASA Grant NNX13AD94G (CAF)
Quantum radiation in external background fields
A canonical formalism is presented which allows for investigations of quantum
radiation induced by localized, smooth disturbances of classical background
fields by means of a perturbation theory approach. For massless,
non-selfinteracting quantum fields at zero temperature we demonstrate that the
low-energy part of the spectrum of created particles exhibits a non-thermal
character. Applied to QED in varying dielectrics the response theory approach
facilitates to study two distinct processes contributing to the production of
photons: the squeezing effect due to space-time varying properties of the
medium and of the velocity effect due to its motion. The generalization of this
approach to finite temperatures as well as the relation to sonoluminescence is
indicated.Comment: 20 page
Phonon spectrum and soft-mode behavior of MgCNi_3
Temperature dependent inelastic neutron-scattering measurements of the
generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give
evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are
compared with ab initio density functional calculations which suggest an
incipient lattice instability of the stoichiometric compound with respect to Ni
vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure
- …