548 research outputs found

    Effect of Mn doping on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3

    Full text link
    Transient reflectivity (TR) measured at laser photon energy 1.51 eV from the indirectly intersurface coupled topological insulator Bi2-xMnxSe3 films (12 nm thick) revealed a strong dependence of the rise-time and initial decay-time constants on photoexcited carrier density and Mn content. In undoped samples (x = 0), these time constants are exclusively governed by electron-electron and electron-phonon scattering, respectively, whereas in films with x = 0.013 - 0.27 ultrafast carrier dynamics are completely controlled by photoexcited electron trapping by ionized Mn2+ acceptors and their dimers. The shortest decay-time (~0.75 ps) measured for the film with x = 0.27 suggests a great potential of Mn-doped Bi2Se3 films for applications in high-speed optoelectronic devices. Using Raman spectroscopy exploiting similar laser photon energy (1.58 eV), we demonstrate that due to indirect intersurface coupling in the films, the photoexcited electron trapping in the bulk enhances the electron-phonon interaction strength in Dirac surface states

    The Mass of the Neutrinos

    Full text link
    In the theory of the Dirac equation and in the standard model, the neutrino is massless. Both these theories use Lorentz invariance. In modern approaches however, spacetime is no longer smooth, and this modifies special relativity. We show how such a modification throws up the mass of the (electron) neutrino.Comment: 14 pages, late

    Acoustic phonon dynamics in thin-films of the topological insulator Bi2Se3

    Get PDF
    Transient reflectivity traces measured for nanometer-sized films of the topological insulator Bi2Se3 revealed GHz-range oscillations driven within the relaxation of hot carriers photoexcited with ultrashort laser pulses of 1.51 eV photon energy. These oscillations have been suggested to result from acoustic phonon dynamics, including coherent longitudinal acoustic phonons in the form of standing acoustic waves. An increase of oscillation frequency from ~35 to ~70 GHz with decreasing film thickness from 40 to 15 nm was attributed to the interplay between two different regimes employing traveling-acoustic-waves for films thicker than 40 nm and the film bulk acoustic wave resonator (FBAWR) modes for films thinner than 40 nm. The amplitude of oscillations decays rapidly for films below 15 nm thick when the indirect intersurface coupling in Bi2Se3 films switches the FBAWR regime to that of the Lamb wave excitation. The frequency range of coherent longitudinal acoustic phonons is in good agreement with elastic properties of Bi2Se3

    Effect of carrier recombination on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3

    Get PDF
    Transient reflectivity (TR) from thin films (6 - 40 nm thick) of the topological insulator Bi2Se3 reveal ultrafast carrier dynamics, which suggest the existence of both radiative and non-radiative recombination between electrons residing in the upper cone of initially unoccupied high energy Dirac surface states (SS) and holes residing in the lower cone of occupied low energy Dirac SS. The modeling of measured TR traces allowed us to conclude that recombination is induced by the depletion of bulk electrons in films below ~20 nm thick due to the charge captured on the surface defects. We predict that such recombination processes can be observed using time-resolved photoluminescence techniques

    Ultrafast carrier dynamics in thin-films of the topological insulator Bi2Se3

    Get PDF
    Transient reflectivity measurements of thin films, ranging from 6 to 40 nm in thickness, of the topological insulator Bi2Se3 revealed a strong dependence of the carrier relaxation time on the film thickness. For thicker films the relaxation dynamics are similar to those of bulk Bi2Se3, where the contribution of the bulk insulating phase dominates over that of the surface metallic phase. The carrier relaxation time shortens with decreasing film thickness, reaching values comparable to those of noble metals. This effect may result from the hybridization of Dirac cone states at the opposite surfaces for the thinnest films
    corecore