548 research outputs found
Effect of Mn doping on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3
Transient reflectivity (TR) measured at laser photon energy 1.51 eV from the
indirectly intersurface coupled topological insulator Bi2-xMnxSe3 films (12 nm
thick) revealed a strong dependence of the rise-time and initial decay-time
constants on photoexcited carrier density and Mn content. In undoped samples (x
= 0), these time constants are exclusively governed by electron-electron and
electron-phonon scattering, respectively, whereas in films with x = 0.013 -
0.27 ultrafast carrier dynamics are completely controlled by photoexcited
electron trapping by ionized Mn2+ acceptors and their dimers. The shortest
decay-time (~0.75 ps) measured for the film with x = 0.27 suggests a great
potential of Mn-doped Bi2Se3 films for applications in high-speed
optoelectronic devices. Using Raman spectroscopy exploiting similar laser
photon energy (1.58 eV), we demonstrate that due to indirect intersurface
coupling in the films, the photoexcited electron trapping in the bulk enhances
the electron-phonon interaction strength in Dirac surface states
The Mass of the Neutrinos
In the theory of the Dirac equation and in the standard model, the neutrino
is massless. Both these theories use Lorentz invariance. In modern approaches
however, spacetime is no longer smooth, and this modifies special relativity.
We show how such a modification throws up the mass of the (electron) neutrino.Comment: 14 pages, late
Acoustic phonon dynamics in thin-films of the topological insulator Bi2Se3
Transient reflectivity traces measured for nanometer-sized films of the
topological insulator Bi2Se3 revealed GHz-range oscillations driven within the
relaxation of hot carriers photoexcited with ultrashort laser pulses of 1.51 eV
photon energy. These oscillations have been suggested to result from acoustic
phonon dynamics, including coherent longitudinal acoustic phonons in the form
of standing acoustic waves. An increase of oscillation frequency from ~35 to
~70 GHz with decreasing film thickness from 40 to 15 nm was attributed to the
interplay between two different regimes employing traveling-acoustic-waves for
films thicker than 40 nm and the film bulk acoustic wave resonator (FBAWR)
modes for films thinner than 40 nm. The amplitude of oscillations decays
rapidly for films below 15 nm thick when the indirect intersurface coupling in
Bi2Se3 films switches the FBAWR regime to that of the Lamb wave excitation. The
frequency range of coherent longitudinal acoustic phonons is in good agreement
with elastic properties of Bi2Se3
Effect of carrier recombination on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3
Transient reflectivity (TR) from thin films (6 - 40 nm thick) of the
topological insulator Bi2Se3 reveal ultrafast carrier dynamics, which suggest
the existence of both radiative and non-radiative recombination between
electrons residing in the upper cone of initially unoccupied high energy Dirac
surface states (SS) and holes residing in the lower cone of occupied low energy
Dirac SS. The modeling of measured TR traces allowed us to conclude that
recombination is induced by the depletion of bulk electrons in films below ~20
nm thick due to the charge captured on the surface defects. We predict that
such recombination processes can be observed using time-resolved
photoluminescence techniques
Ultrafast carrier dynamics in thin-films of the topological insulator Bi2Se3
Transient reflectivity measurements of thin films, ranging from 6 to 40 nm in
thickness, of the topological insulator Bi2Se3 revealed a strong dependence of
the carrier relaxation time on the film thickness. For thicker films the
relaxation dynamics are similar to those of bulk Bi2Se3, where the contribution
of the bulk insulating phase dominates over that of the surface metallic phase.
The carrier relaxation time shortens with decreasing film thickness, reaching
values comparable to those of noble metals. This effect may result from the
hybridization of Dirac cone states at the opposite surfaces for the thinnest
films
- …