6,023 research outputs found

    A model of the spatial and temporal variation of the Uranus thermal structure

    Get PDF
    Seasonal variability of the temperature structure of Uranus is modeled for all latitudes in the .0004 to 2 bar pressure range in anticipation of the Voyager encounter in January 1986. Atmospheric heating in the model results on the one hand from an internal heat source and, on the other hand, from absorption of solar energy by methane and by non-conservative aerosols located between the 0.5 and 2 bar levels. Various cases for the behavior of the internal heat flux are investigated, such as constant with latitude or constrained to yield a time-averaged thermal emission independent of latitude. Meridional transport of heat in the stably stratified atmosphere is not taken into account. The results indicate that the Voyager encounter time, very small north-south temperature asymmetry should be expected. Moreover, the northern hemisphere, although not illuminated, should emit as much energy (within one percent) as the southern hemisphere at this date. At a given latitude, extreme temperatures are reached at the equinoxes. At the poles, seasonal amplitudes of about 10 K in the upper stratosphere and 6 K at the 0.6 bar level are predicted, and the variation with time of the emission to space is found to be at most 20 percent. The atmosphere of Uranus appears to be characterized by very long radiative response times (mainly due to its cold temperature) which inhibit the large seasonal variations that one could otherwise expect in view of the high obliquity of the planet and its long orbital period

    Spatial variation of the thermal structure of Jupiter's atmosphere

    Get PDF
    The radiative seasonal model described by Bezard and Gautier for the case of Saturn was adapted to Jupiter. That the atmosphere is radiatively controlled above the 500 mb pressure level and that the temperature at the radiative-convective boundary level is constant for all latitudes is assumed. An internal heat source and absorption by methane and aerosols contribute to atmospheric heating. Absorption by aerosols was adjusted to give a planetary Bond albedo equal to 0.343. Despite Jupiter's low obliquity, the model predicts seasonal variations of temperature of several degrees for the 1 mb pressure level at mid-latitude regions

    Micro-Drilling of ZTA and ATZ Ceramic Composit: Effect of Cutting Parameters on Surface Roughness

    Get PDF
    Ceramics are a class of materials widely used during last fifteen years for orthopaedic applications. It is well known that they are characterized by low wear rate, and friction coefficient. However, these materials are very difficult to machine into complex shapes because of their brittleness and high hardness. The most effective method to increase the crack resistance is the formation of a composite structure. This class of materials, composed by two or more different ceramics, can present higher characteristic respect to the single component, like fracture toughness and flexural strength. This paper presents a study of the influence of cutting parameters (cutting speed, feed rate and step number) onto the hole surface roughness and deformation due to the drill operation. The ceramic composite materials AZT (alumina toughened zirconia) and ZTA (zirconia toughened alumina) were first characterized in terms of hardness and roughness. After the drilling test, the holes were analyzed using scanning electron microscope (SEM) and an advanced 3-dimensional non-contact optical profilomete

    Pattern recognition of satellite cloud imagery for improved weather prediction

    Get PDF
    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products

    Effects of Helium Phase Separation on the Evolution of Extrasolar Giant Planets

    Full text link
    We build on recent new evolutionary models of Jupiter and Saturn and here extend our calculations to investigate the evolution of extrasolar giant planets of mass 0.15 to 3.0 M_J. Our inhomogeneous thermal history models show that the possible phase separation of helium from liquid metallic hydrogen in the deep interiors of these planets can lead to luminosities ~2 times greater than have been predicted by homogeneous models. For our chosen phase diagram this phase separation will begin to affect the planets' evolution at ~700 Myr for a 0.15 M_J object and ~10 Gyr for a 3.0 M_J object. We show how phase separation affects the luminosity, effective temperature, radii, and atmospheric helium mass fraction as a function of age for planets of various masses, with and without heavy element cores, and with and without the effect of modest stellar irradiation. This phase separation process will likely not affect giant planets within a few AU of their parent star, as these planets will cool to their equilibrium temperatures, determined by stellar heating, before the onset of phase separation. We discuss the detectability of these objects and the likelihood that the energy provided by helium phase separation can change the timescales for formation and settling of ammonia clouds by several Gyr. We discuss how correctly incorporating stellar irradiation into giant planet atmosphere and albedo modeling may lead to a consistent evolutionary history for Jupiter and Saturn.Comment: 22 pages, including 14 figures. Accepted to the Astrophysical Journa

    New Constraints on the Composition of Jupiter from Galileo Measurements and Interior Models

    Get PDF
    Using the helium abundance measured by Galileo in the atmosphere of Jupiter and interior models reproducing the observed external gravitational field, we derive new constraints on the composition and structure of the planet. We conclude that, except for helium which must be more abundant in the metallic interior than in the molecular envelope, Jupiter could be homogeneous (no core) or could have a central dense core up to 12 Earth masses. The mass fraction of heavy elements is less than 7.5 times the solar value in the metallic envelope and between 1 and 7.2 times solar in the molecular envelope. The total amount of elements other than hydrogen and helium in the planet is between 11 and 45 Earth masses.Comment: 15 pages, 2 figures (1 color
    • 

    corecore