32 research outputs found

    Drawing bobbin lace graphs, or, Fundamental cycles for a subclass of periodic graphs

    Full text link
    In this paper, we study a class of graph drawings that arise from bobbin lace patterns. The drawings are periodic and require a combinatorial embedding with specific properties which we outline and demonstrate can be verified in linear time. In addition, a lace graph drawing has a topological requirement: it contains a set of non-contractible directed cycles which must be homotopic to (1,0)(1,0), that is, when drawn on a torus, each cycle wraps once around the minor meridian axis and zero times around the major longitude axis. We provide an algorithm for finding the two fundamental cycles of a canonical rectangular schema in a supergraph that enforces this topological constraint. The polygonal schema is then used to produce a straight-line drawing of the lace graph inside a rectangular frame. We argue that such a polygonal schema always exists for combinatorial embeddings satisfying the conditions of bobbin lace patterns, and that we can therefore create a pattern, given a graph with a fixed combinatorial embedding of genus one.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Three-Dimensional Fiber Segment Orientation Distribution Using X-Ray Microtomography

    Get PDF
    The orientation of fibers in assemblies such as nonwovens has a major influence on the anisotropy of properties of the bulk structure and is strongly influenced by the processes used to manufacture the fabric. To build a detailed understanding of a fabric’s geometry and architecture it is important that fiber orientation in three dimensions is evaluated since out-of-plane orientations may also contribute to the physical properties of the fabric. In this study, a technique for measuring fiber segment orientation as proposed by Eberhardt and Clarke is implemented and experimentally studied based on analysis of X-ray computed microtomographic data. Fiber segment orientation distributions were extracted from volumetric X-ray microtomography data sets of hydroentangled nonwoven fabrics manufactured from parallel-laid, cross-laid, and air-laid webs. Spherical coordinates represented the orientation of individual fibers. Physical testing of the samples by means of zero-span tensile testing and z-directional tensile testing was employed to compare with the computed results

    Very fast kicker for accelerator applications

    No full text
    We describe a very fast kicker with unique combination of high repetition rate and short pulse width. Constructionally, the device is a counter traveling wave strip-line kicker fed by semiconductor high-voltage pulse generator. Experimentally tested kicker has a full pulse width of about 7 ns, 1.4 MHz repetition rate and maximum kick strength of the order of 3 G m. Recent achievements in high-voltage semiconductor field-effect-transistors (FET) technology and goal-specific optimization of the kicker parameters allow many-fold increase of the strength, and the kicker can be a very useful tool for bunch-by-bunch injection/extraction and other accelerator applications
    corecore