
Siberian Branch of Russian Academy of Science

BUDKER INSTITUTE OF NUCLEAR PHYSICS

N. Angert, K. Blasche, O. Boine-Frankenheim, N. Dikansky,
Yu. Eidelman, I. Hofmann, B. Grishanov, V. Parkhomchuck,

D. Pestrikov, V. Petrov, V. Shevelko, A. Skrinsky,
B. Sukhina

STUDY FOR A HIGH-INTENSITY HEAVY ION

SYNCHROTRON WITH STRONG BUNCH COMPRESSION

(Part I)

Budker INP 2000-93

NOVOSIBIRSK
2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25369692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Study for a high-intensity heavy ion
synchrotron with strong bunch compression

(Part I)
N. Angert y, K. Blasche y, O. Boine-Frankenheim y, N. Dikansky z,

Yu. Eidelman z, I. Hofmann y, B. Grishanov z, V. Parkhomchuck z,

D. Pestrikov z, V. Petrov z, V. Shevelko �, A. Skrinsky z,

B. Sukhina z

yGesellschaft f�ur Schwerionenforschung mbH (GSI),

Planckstrasse 1, 62491 Darmstadt, Germany
zBudker Institute of Nuclear Physics (BINP),

630090, Novosibirsk, Russia
�P.N. Lebedev Physical Institute,

Leninskii prospect 53, 117924 Moscow, Russia

Summary

We report a conceptual design study for a high intensity heavy ion synchrotron which should enable
accelerations of U4+ ions up to 125 MeV/u with subsequent compression of the accelerated beam in a
single bunch with the length of 10 ns (or, shorter) so that this bunch could be exposed at a pellet to
study the heavy ion driven fusion. The intensity of the compressed bunch should be 1013, or 1012 of U4+

ions. The bunch diameter at the target should be 1 mm for 1013 U4+ ions and 0.2 mm for 1012 U4+

ions. The primary ion beam for these operations should be provided by a linear accelerator same as new
UNILAC at GSI.

Most important features of such a machine are determined by low charges of accelerated ions. The
lifetime of the ion beam in the synchrotron is mainly determined by the charge changing ion collisions
with atoms of the residual gas and typically is very short. For example, for the gas mixture in the vacuum
chamber of 77%H2+20%N2+3%Ar and for the gas pressure of 0.01 nTorr this lifetime ranges from 2 s
for the ion energy 10 MeV/u (injection) to 5 s for the ion energy 125 MeV/u.

So short lifetimes strongly determine basic design concepts of the machine. For reasonable amplitudes
of the accelerating RF voltages the acceleration time of ions can be about 0.2{0.3 s. It means that all the
post-acceleration operations with ion beam should be done as short as possible (practically, within several
hundred of turns in the synchrotron). That requirement can be satis�ed due to extremely low longitudinal
bunch emittances, which are expected from new UNILAC (in a single injected bunch 3 [keV/u]�ns). In
line with a requirement of the suppression of the space charge instability of ion bunches it implies the
operations with the bunches having extraordinary small momentum spreads (range in 10�5{3�10�6).
On the other hand, the compression of such bunches can be done as a direct �=2 bunch rotation in the
longitudinal phase space. During this rotation the space charge forces may result in the instability of ion
oscillations in the compressing bunch. However, the lattice of the synchrotron can be designed in such a
way that signi�cant transverse and longitudinal blowups of the bunch will occur during the turn, which
is the next to the compression event.

The most signi�cant limitations on the beam intensity in the discussed synchrotron are due to longitu-
dinal and transverse space charge instabilities during injections and then, during the bunch compression.
Conventional multibunch and single bunch instabilities are rather weak and can be suppressed by Lan-
dau damping. However, due to low beam momentum spread required for fast bunch compression the
longitudinal feedback system can be useful to suppress coherent oscillations during debunching.

Geometrically, the ring consists of two 50 FODO-cells arcs each providing the total bending angle

�, connected by two 200 m long straight sections. One of the long straight section is designed as a

three-beamline bypass. One beamline providing the acceleration of ions, another providing the energy

modulation required for the bunch compression and the last is the RF-free beam line for the �nal bunch

compression. The opposite straight section contains a two beamline bypass.

c
Budker Institute of Nuclear Physics SB RAS
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Chapter 1

Introduction

Our objective in writing of this Report was an investigation of accelerator concepts for
the future extension of the GSI accelerator facilities. The main topic of these researches
was a design study for a heavy ion synchrotron including schemes for bunch compression,
which could enable subsequent plasma and controlled nuclear fusion studies using heavy
ion beam of U4+

238 with an intensity up to 1013 ions.
Starting these studies we assumed as an injector the new linear heavy ion accelerator

at GSI (new UNILAC) and that it will provide, e.g. for U4+ ions the following parameters:

ion energy E MeV/u 5 to 10
beam current I emA 15
bunch repetition frequency fb MHz 36
beam pulse duration ms up to 1
transverse beam emittances (normalized) �x;z mmmrad 1
longitudinal bunch emittance �s (keV/u)�ns 3

The starting design parameters for the synchrotron were adopted to be the following

� a top magnetic rigidity BR=100 Tm, corresponding to 125 MeV/u for U4+;

� ion beam intensities per cycle of about 1013 of U4+ ions with multiturn injection
and about 1012 of U4+ ions with single turn injection;

� the bunch compression scheme for the compression of all ions in the synchrotron
into a single short bunch with a duration of about 10 ns or less at the target; the
bunch diameter at the target should be d ' 1 mm for 1013 U4+ ions and d ' 0:2
mm for 1012 U4+ ions;

� synchrotron operations at high energies and at a repetition rate of 3 Hz, e.g. the
acceleration of 1012 U12+ ions up to 800 MeV/u, or the acceleration of 109 U92+ ions
from SIS up to 10 GeV/u.

It means that desired synchrotron should be a multi-functional machine, which in line
with the beam fusion studies could enable possible high energy extensions of the GSI
accelerator complex. In particular, that could be a �rst step for an already discussed
electron nucleon collider (see, e.g. in Ref.[1]).
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There are several speci�c features of the discussed synchrotron, which make the de-
signing of this machine more challenging compared to the bunch compressors discussed
previously (see, e.g. in Ref.[2]). First, low charges of the uranium ions imply that ions
still have many of electron shells. In these conditions, the cross sections of the charge
changing collisions of the ions with atoms of the residual gas are large. For example, ac-
cording to data calculated in Ref.[3] these cross sections range from 2�10�15 [cm2] for the
ion energy 1 MeV/u to 5�10�17 [cm2] for the ion energy 100 MeV/u. Correspondingly,
the lifetimes of the beam in the discussed synchrotron are rather short. As we shall see
in the next Chapter, relevant lifetimes ranges from 2 s for the ion energy of 10 MeV/u
to approximately 5 s for the ion energy of 125 MeV/u. In order to keep the ion losses
within, say, 10%, both the acceleration of ions and post-acceleration operations should be
done rather fast. Although the accuracy of these calculations is given by a factor of about
2, short lifetimes of ions can strongly limit the operational performance of the discussed
synchrotron.

Second, for given ion energy in units of MeV/u low charges make the ion motion less
sensitive to e�ects of electro-magnetic �elds on the closed orbit. In particular, in equivalent
conditions that demands higher accelerating voltages. As we shall see in Chapter 6, the
amplitude of this voltage which can be achieved using, e.g. ferrite loaded cavities is limited
by the value of � 12 keV per a single RF cavity. So that an increase in the required
RF amplitudes demands to increase the number of cavities on the closed orbit. In the
high current operational modes that can limit the beam performance in the synchrotron.
The longitudinal beam emittance from new UNILAC is expected to be very low (�s =3
[keV/u]�ns).

Finally, if we inject 1000 bunches without signi�cant increase in �s, the total longi-
tudinal emittance of the bunch before its compression will be 0.003 eV�s. This number
is at least one order of magnitude lower than that discussed for the bunch compressors
previously. For realistic values of the RF voltages, low longitudinal emittances of injected
bunches and their matching in the longitudinal phase space of the synchrotron imply that
the momentum spread of injected bunches (�p=p) should be unusually low (of the order
of 10�5). On one hand, low momentum spreads of the bunches enables to reduce the time
required for the bunch compression. On the other hand, the motion of ion in the bunches
becomes more sensitive to collective perturbations and to the noises on the closed orbit
(noises in RF systems and others).

The report consists of two parts. The Part I describes the conceptual design study of
the synchrotron bunch-compressing. The Part II describes the RF systems for acceleration
of ions and for the bunch compression of ion beam at the energy 125 MeV/u.
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Chapter 2

Design Concepts

In this Chapter, we discuss the desired parameter set of the synchrotron when it will
work in the U4+ bunch compression mode. Our main objective will be to �gure out the
requirements to the parameters of the injected beam which could enable its preparation for
the compression. One of the most important issue is providing the possible longer lifetime
of the beam. Another scope of problems occurs due to the requirement of the matching the
phase space volumes of injected bunches to the ring acceptances. Assuming that deeper
analysis of the beam intensity limitations will be done in the subsequent chapters, we shall
take here into account only crude space charge e�ects. However, since some limitations
on the beam performance due to space charge �elds may have a transient character while
theoretical predictions in this �eld are not very sure, it can be more bene�cial to prepare
the bunches with safe parameters prior their injection in the synchrotron.

2.1 General parameters

Similar to the ENC-ring [1], we adopt that the closed orbit perimeter in the synchrotron
is � = 1200 m. Then, taking B = 1:4 T, we �nd that with BR = 100 Tm the curvature
radius in the bending magnets is R = 71:4 m. As we shall see in Chapter 5, the lattice
design enabling better longitudinal compression without signi�cant transverse blowup of
the beam demands an employment of the arc lattice cells, which are 10 m long. The total
number of the arc cells is 100. So that the length of the closed orbit in the arc regions
of the ring is 1000 m. Remaining 200 m of the orbit perimeter can be equally divided
between 2 straight sections, each of 100 m long, subsequently for injection/extraction and
for RF{systems. The revolution period of ions (T0 = �=v, v is the ion velocity) in the
ring with such a perimeter ranges from T0 = 38:9 �s (for kinetic energy Win = 5 MeV/u)
and T0 = 27:6 �s (Win = 10 MeV/u) till T0 = 8:5 �s at the extraction energy Wf = 125
MeV/u. The number of U4+ ions which can be injected in the synchrotron during one
turn is

�Nin =
T0I

Ze
; (2.1)

where Ze is the ion charge. For U4+ ions this yields
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Win [MeV/u] 5 10
�Nin=10

11 9.1 6.47

The number of ions which can be injected with the kinetic energy 5 MeV/u is close
to the required value to operate the synchrotron in the low intensity mode (Nt = 1012

U4+ions in the beam) and is about a half of this value for Win = 10 MeV/u. So that
the operations starting from 10 MeV/u demands the two-turn injection. The �lling of
the synchrotron in the high intensity mode (Nt = 1013 U4+ ions in the beam) demands
correspondingly 10-turn injection for Win = 5 MeV/u and 20-turn injection for Win = 10
MeV/u. These multiturn injections last during 10T0 ' 0:4 ms for injection at 5 MeV/u
and during 20T0 ' 0:55 ms for Win = 10 MeV/u. Both numbers do not exceed the
beam pulse duration from the linac and therefore do not limit the possibilities of the
high intensity operations of the synchrotron. In the case of the multiturn injection, the
normalized transverse bunch emittance increase at least in the number of injection turn
times.

The cross section geometry of the beam obtained after the multiturn injection depends
on the injection scenario. For example, if new bunches are injected in the betatron phase
space in the horizontal plane, resulting beam will have a 
at geometry with the vertical
rms width equal to

p
�� and with the horizontal width exceeding, or equal to

p
ninj��,

where ninj is the number of the injections and � is the emittance of an injected bunch.
After 20-turn injection the aspect ratio in such a beam will vary along the ring according
to

�y
�x
' 0:223�

s
�y(s)

�x(s)
: (2.2)

An advantage of this injection mode is the smaller required vertical aperture in the arc
regions of the synchrotron.

Another possibility occurs when equal number of injections �ll the beam in the vertical
and in the horizontal betatron phase space. In this case and provided that �-functions
of the vertical and of the horizontal betatron oscillations do not di�er very strongly, the
cross section of the resulting beam can be close to a round one. The radius of such a
beam is

r =

r
ninj
2

[�y + �x] � '
p
ninj�?�; �? =

�y + �x
2

: (2.3)

After 20-turn injection the beam radius will be r ' 4:5
p
�?�. Employment of this injection

mode, generally, demands larger vertical aperture in the ring. However, this injection
mode enables one to decrease the modulations of the beam size along the ring (at least
in the arc sections of the synchrotron).

In order to avoid the problems with the crossing of the transition energy of the ring
during the high energy operation modes, the horizontal betatron tune should exceed
10. If the tunes of the vertical and horizontal betatron oscillations have close values,
the average value of the �-function of the ring (�av = R0=�, R0 = �=2� =191 m is
the average radius of the closed orbit) should be about 18 m. However, if we assume the
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single-bunch normalized emittance �0 =1 mmmrad and that the beam containing 1013 U4+

ions is obtained after 20-turn injection without additional emittance losses, the transverse
emittance of the injected bunch

� =
�0


(v=c)
(2.4)

will be at least �inj = 0:1 mm for injection energy Winj = 5 MeV/u and �inj = 0:067 mm
for Winj = 10 MeV/u. With �av = 18 m corresponding beam radii (rb =

p
��av) are 4.2

cm and 3.5 cm. Since the pipe radius should 2{3 times exceed the beam radius, it can
be reasonable to decrease �av a few times to avoid too large geometrical aperture in the
ring.

2.2 Lifetime

One of the most important features of the discussed synchrotron is a rather short lifetime
of the beam due to charge changing collisions of the U4+ ions with the particles (atoms, or
molecules) of the residual gas. Since the charge of U4+ ions is small these collisions result
in the particle losses reducing the lifetime of the beam. Apart from severe limitations on
the vacuum conditions in the synchrotron, that fact makes as more preferable the shortest
beam manipulation modes.

In our analysis we use as the data for the total cross sections for such processes those
calculated in Ref.[3]. According to these data, within the energy range of W =10{120
MeV/u the total cross section of the charge changing collisions of U4+ ions per a particle
of the gas can be �tted using (see also Fig.2.1)

�tot(W ) = 10�16
�
W0

W

�0:83

[cm2]; (2.5)

where W0 = 40 MeV/u is the �tting parameter. Corresponding ion loss rate from the
beam is de�ned as

d lnN

dt
= �natv�tot; (2.6)

where nat is the density of the residual gas particles. Since the loss cross section data
are given in units of [cm2/particle], the density nat should be recalculated from e.g. gas
pressure in the vacuum chamber as the density of the one-atomic gas. In this case, nat
reads:

nat[cm
�3] ' 3:5� 1016P [Torr]; (2.7)

For a given ion energy the beam intensity decays exponentially with the e-folding lifetime

�(W ) =
1

natv�tot
: (2.8)

Fig.2.2 shows that in the energy range 10{125 MeV/u and for the gas pressure of 0.01
nTorr, the beam lifetime ranges between 2.1 s at the injection energy 10 MeV/u till 5.2 s
atW =125 MeV/u. Since during the lifetime the beam loses about 63% of its particles, all
time-consuming operations with the beam should be done with the accelerated beam. The
particle losses during acceleration are estimated integrating Eq.(2.6) over the acceleration
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Figure 2.1: Dependence of the total charge changing cross section (on a single particle in
the gas mixture) on the ion energy. Open circles are redrawn from Ref.[3], dashed line {
result of the �tting using Eq.(2.5); U4+ ions, residual gas is assumed to be the mixture of
77%H2+20%N2+3%Ar; .
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Figure 2.2: Dependence of the lifetime on the U4+ ion energy. P=0.01 nTorr, the gas
mixture is assumed to be 77%H2+20%N2+3%Ar.
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time interval (�t). Assuming that ion momentum linearly increases during the time
interval �t

p(t) = pin +
pf � pin
�t

t;

we �nd the number of the lost ions

�N

Nin

= 1� exp

�
��t
�1

�
; (2.9)

where

1

�1
=

natc�0
(vf=c)0:66

1� �0:33

1� �
; � =

(BR)in
(BR)f

; (2.10)

and

�0 =
10�16

0:34

�
2W0

mpc2

�0:83

' 3:812� 10�17 [cm2]:

For the same gas mixture and for the gas pressure of 0.01 nTorr we �nd �1 = 3:173 s. As is
seen from Fig.2.3, the number of the lost ions ranges from 3% to 14%, if the acceleration
time changes between 0.1 and 0.5 seconds.
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Figure 2.3: Dependence of the particle losses from the beam on the acceleration time.
The gas mixture is assumed to be 77%H2+20%N2+3%Ar, from top to bottom P=10, 5,
2.5 and 1 pTorr.

If we take as the acceleration time �t = 0:3 s and P=0.01 nTorr, then during the
acceleration the beam loses about 9% of its intensity. Provided that subsequent beam
transformations can be made during the lifetime, the integral particle losses due to charge
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changing collisions with the atoms of the residual gas will be about 72% of the beam
intensity. To keep the total ion losses within, say, 10 % of the beam intensity, all the
post-acceleration operations should be done within the time interval of about 0.01 of
the lifetime. As is seen from Fig.2.3 for the acceleration time �t = 0:3 s the beam
particle losses during this period do not exceed 1% for the residual gas pressure P =1
pTorr. Scaling the data in Fig.2.2 we �nd, that for this residual gas pressure the beam
lifetime ranges from 20 s for the ion energy 10 MeV/u to 52 s or the ion energy 125
MeV/u. Correspondingly, the time intervals available for the post-acceleration beam
transformations became 10 times longer.

Another channel for the charge-changing processes provides inelastic intrabeam scat-
terings (IBS) of ions in the bunch. According to results given in Section 3.1, the lifetime
due to these collisions decreases with an increase in the ion energy and with a decrease in
the average �-function of the ring. If the average value of �-function in the ring exceeds
10 m, the contribution of inelastic IBS in the lifetime approaches 100 s for the ion energy
125 MeV/u. So that the contribution of the charge changing IBS in the particle loss for
the discussed synchrotron is negligible small.

Lower ion losses demand a reduction of the cycle duration of the synchrotron. As
we shall see in Section 2.6, in the high intensity mode (Nt = 1013 of the U4+ ions) the
required accelerating voltage is already high. Therefore, for realistic parameter sets of the
RF-system of the synchrotron the duration of the acceleration cycle cannot be reduced
very strongly. In particular, it means that in order to reduce the particle loss-rate during
the cycle, we have to choose among di�erent compression scenario those, which demand
the bunch compression time being substantially shorter than the lifetime of the beam.
These calculations also show that operation with U4+ ion beam will be more reliable,
if the pressure of the residual gas in the vacuum chamber is reduced to, say, 1 pTorr.
For a given pressure of the residual gas in the vacuum chamber, a signi�cant increase in
the lifetime can be achieved, if the populations of heavy atoms in the gas mixture are
reduced. According to the paper [4], the weight of the population in the mixture in the

particle losses rate is determined by the factor Y (k)(Z2
T + ZT )

(k)
, where Y (k) is the partial

concentration of the atoms of a sort k in the mixture and (ZT )
(k) is the atomic number

of atoms of the sort k. So that the total ion loss rate is proportional to the value

R =
X
k=1

Y (k)(Z2
T + ZT )

(k)
:

For the mixture 77%H2+20%N2+3%Ar the value of R is equal to

R = 3:08 + 22:4 + 10:26 = 35:74:

It is about of same value (R =37.8) for the mixture 90%H2+10%Ar, but will be about 2.5
times smaller (R =14.8) for the mixture 90%H2+10%N2. Correspondingly, for same gas
pressure (P = 0:01 nTorr) the lifetime in the last case, will be 2.5 times larger (5 s forW=
10 MeV/u and 12.5 s forW = 125 MeV/u) than for the mixture of 77%H2+20%N2+3%Ar.
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2.3 Transverse space charge instability

One of the most important and most known limitation on the beam intensity occurs due
to transverse space charge �elds of the beam. For betatron oscillations the strength of
perturbations from the bunch space charge �elds is evaluated calculating the so-called
Laslett tune shift of betatron oscillations (��L). For the beam with a radius rb =

p
��av

the value of ��L reads

��L ' Z2

A

Nrp
2�
2(v=c)�0

�
�

2�s

�
; rp =

e2

mpc2
; (2.11)

where N is the number of ions in the bunch, Ze is the charge of the ion, A is its atomic
number. For the multibunch mode, when � = h�RF , where h is RF-harmonic number
(number of bunches in the beam), Eq.(2.11) can also be rewritten in the form

��L ' Z2

A

Ntrp
2�
2(v=c)�0B

; Nt = hN; (2.12)

where B ' 2�s=�RF is the bunching factor.
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Figure 2.4: Dependence of the Laslett tune shift on the ion kinetic energy; 1013 of U4+

ions in the beam, B = 0:4, �0 = 10 mmmrad.

As is seen from Fig.2.4 and even if the bunching factor in the beam is not very small
(B = 0:4), for 1013 of U4+ ions in the beam the Laslett tune shift at energies W =5{
10 MeV/u ranges between 0.4 and 0.27. So high values of ��L imply that in order to
avoid strong betatron emittance blowups just after injection the beam should be quickly
accelerated (at least to energies with safer values of ��L).

After acceleration the beam space charge can strongly limit the beam performance
during the bunch compression. During this process the bunch length decreases approxi-
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mately by the factor of 1000. Even if the initial value of the Laslett tune shift is about
0.01, after compression it reaches the value 10. So that the working point in the betatron
oscillations tune diagram may cross many resonances. If this process can be completed
during a small amount of turns in the ring, only lower order resonances (parametric and,
probably, integer-type resonances) can limit the beam performance. This problem can be
eliminated decreasing the strengths of the dangerous harmonics in the perturbing �elds,
as well as increasing the speed of the resonance crossing.

Apart from the limitations due to perturbations in the single particle oscillations the
Coulomb interactions of the bunches in the multiple injection mode can result in the
resonant instability of their coherent oscillations. This limitation occurs during the time
intervals which are shorter than the debunching periods in the betatron phase space. For
a given value of the bunch intensity in the betatron phase space (N=[�0B]) the instability
limits the position of the working point in the tune diagram. In particular, this instability
is weaker for the rings with higher number of the superperiods in the lattice.

2.4 Bunch compression

The ultimate goal of the synchrotron operation in the U4+{mode is the longitudinal bunch
compression at the target to a length corresponding to 2�b =10 ns, or less. It implies that
before compression the beam is accelerated in the synchrotron from, say, W= 10 MeV/u
till W= 125 MeV/u, then it is transformed in a single bunch. Generally, the beam
transformation may occur in the following steps:

1. Debunching by slow switching-o� of the accelerating RF-voltage.

2. Precompression using slow switching-on of the voltage of the RF-system compres-
sion. The precompression occurs until the Laslett tune shift of the compressed beam
reaches its threshold value. We take as the threshold the value ��L ' 0:25.

3. Final bunch compression due to �=2-bunch rotation in the longitudinal phase space.

Such a compression scenario implies that the beam lifetime is not limited very strongly
and that the beam momentum spread after debunching is high enough.

If the beam is obtained using the multiturn injections in the betatron phase space and
provided that the longitudinal beam emittance is not increased during the steps preceding
its transformation in the single bunch, the momentum spread in this bunch cannot be
less than

Æc =
�sh

2(2�b)pv
:

Taking �s = 3 (keV/u)�ns, and pv ' 2W = 2 � 125 MeV/u, we �nd Æc = 0:06 % for
Win = 10 MeV/u and Æc = 0:08 % for Win = 5 MeV/u. These values do not pose any
strong limitations on the lattice performance of the required beam transport lines.

In the simplest case, the length of the ejected bunch can be decreased, if prior to
(or, just after) ejection particle momenta are modulated along the bunch to decelerate
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the head-on ions and to accelerate the tail-on ions. If the (rms) length of the bunch
before such a modulation is �s0 and if the amplitude of the momentum modulation is
[�p=p]A = ���s0, then after drifting the path L the bunch length decreases by 2L[�p=p]A.
These two transformations produce the �=2�rotation in the bunch longitudinal phase
space. We shall call such a compression process an inertial one.
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. 

u
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Figure 2.5: To the inertial bunch compression. Solid line without symbols shows initial
bunch; solid line with full circles shows initial bunch after energy modulation, with open
circles { compressed bunch.

One of the most important limitation on the compressed bunch parameters poses
the transverse space charge �eld of the bunch. Reduction of the bunch factor during
compression results in an increase in the bunch Laslett tune shift which may exceed the
threshold value. As is seen from Fig.2.6, at the energy of 125 MeV/u the Laslett tune
shift of a single bunch containing 1013 ions of U4+ exceeds 0.3, when the bunch length
approaches 50 m.

The description of the compression of so intense beam demands to �nd out particular
threshold value of ��L, which is speci�c for a particular lattice of the ring as well as for
a particular compression duration. As we shall see in Chapter 4, substantial reduction
in the compression time becomes possible only in the case, when the bunch momentum
spread is very small. An increase in the momentum spread of the compressed bunch both
increases the time required for the compression and limits a possible value of the bunch
length reduction. If before the momentum modulation the rms momentum spread of the
bunch is �Æ, the (rms) bunch length due to inertial compression reaches its minimum

�2min = �2s0
�2Æ

�2Æ + �2�2s0
; (2.13)

when the bunch passes the length (see, e.g. in Appendix A.3)

15



10
0

10
1

10
2

10
3

0,01

0,1

1

10

 

La
sl

et
t t

un
e 

sh
ift

Bunch length [m]

Figure 2.6: Dependence of the Laslett tune shift on the bunch length; W = 125 MeV/u,
�0 = 10 mmmrad, Nt =10

13 of U4+ ions in the beam.

L = Lmin =
1

��
� 1

1 + (�Æ=��s0)2
; � =

dÆ

ds
: (2.14)

During subsequent drifting the bunch length increases again. These expressions show that
without other limitations, the compressed bunch will be shorter, if its momentum spread
before modulation is smaller. De�ning the compression factor as

X =
�s0
�s
; (2.15)

we �nd that a required (inertial) compression will be feasible, if the momentum spread in
the precompressed bunch is

�Æ =
��s0p
X2 � 1

: (2.16)

Taking as an example ��s0 = 0:04 and �s0 =50 m (2�s0 '700 ns),

X =
700

10
= 70;

we �nd that the momentum spread in the bunch before compression should not exceed
�Æ = 5:8� 10�4. Higher values of �Æ will result in longer bunches. The value of Lmin in
this example is a little bit longer than the closed orbit perimeter

Lmin ' 1=� = 1250 [m]:

Smaller momentum spreads are necessary to reach same desired compression factors us-
ing smaller momentum modulation amplitudes (��s0). For example, if ��s0 is set 4 times
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smaller, which is much more realistic, the obtaining of the same compression factor de-
mands 4 times more monochromatic precompressed bunch.

Additional limitations on the �nal length of the bunch occur due to electrostatic
repulsion of ions. For a monochromatic beam (�Æ = 0) and after inertial compression, the
bunch length cannot become shorter than

�f =
�in

1 +
�inv
(v=c)

2(�p=p)2in
6Z2Nrp�

; (2.17)

where (�p=p)in is the amplitude of the momentum modulation before compression, �in is
initial bunch length.
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Figure 2.7: Dependence of the minimum bunch duration on the amplitude of the momen-
tum modulation; W = 125 MeV/u, 1013 of U4+ ions in the bunch, �in = 708 ns.

Due to �nite momentum spread in the beam the compressed bunch length should
exceed �f . As is seen from Fig. 2.7, the bunch length at the target can correspond to 10
ns, if (�p=p)in exceeds 0.2 %.

2.5 Longitudinal acceptance and emittance

In order to avoid the longitudinal phase space dilution it can be reasonable to choose RF-
frequency at injection energy (f inRF ) equal to the bunch frequency in the injected beam
(f inRF =36 MHz). In this case, the bunch to bunch distance (�RF = v=f inRF ) and RF-
harmonic number (h = T0f

in
RF ) are correspondingly �RF = 0:86 m, h = 1400 for Win =5

MeV/u and �RF = 1:21 m, h = 994 for Win = 10 MeV/u.
The phase space volumes of the injected bunches should match the lattice acceptances.

The matching of the longitudinal acceptance of the synchrotron with the longitudinal
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phase space volumes of injected bunches poses some limitations on the parameters of the
RF-system of the ring. The phase space trajectories of small synchrotron oscillations read
(see, e.g. in Appendix A.1)

�p2

2�!sJs
+
�!sz

2

2Js
= 1; (2.18)

where � = p=(�v),

� =
1


2
� 1


2tr
(2.19)

is the slip factor of the ring, !s = !0�s is the frequency of the synchrotron oscillations
and �s is the tune of the synchrotron oscillations

�s =

s
ZeV sin(�s)h�

A2�pv
; (2.20)

A is the atomic number of the ion. The action variable Js in Eq.(2.18) determines the
area (SJ) of the phase space encircled by the ellipse (SJ = 2�Js). The ellipse with SJ = �s
encircles the longitudinal bunch emittance. The main half-axes of such an ellipse read
(Æ = �p=p and � = z=v)

�Æ = Æb =

r
2�s�s
pv�T0

; �b =

s
��sT0
2�2�spv

: (2.21)

If e�ects of the longitudinal space charge of the beam are small, these two formulae
de�ne the required phase space parameters of the bunches, which should be prepared
before injecting in the synchrotron. Provided that the values �Æ and �b are given for some
reason, Eqs.(2.21) de�ne the value of the synchrotron tune, which matches the longitudinal
acceptance of the synchrotron and the longitudinal emittance of the injected bunches.

Inspecting Fig.2.8 we �nd out that if �Æ is within the interval 0.1{0.01 o/oo, the
acceptable values of the synchrotron tune should be large enough. In particular, it reaches
the stability threshold (�s = 1=�, a single RF-station per turn), if �Æ = 0:06 o/oo for the
injection energy W = 10 MeV/u and if �Æ = 0:07 o/oo for the injection energy W = 5
MeV/u. In order to avoid too high values of the synchrotron tunes at injection energy the
momentum spread in the injected bunches should not exceed 0.02{0.03 o/oo. The required
values of the RF-amplitude (indeed, V sin(�s), where �s is the synchronous phase) within
the stability region range till 300 kV for W = 5 MeV/u and till 800 kV for W = 10
MeV/u (Fig.2.9)

Calculations of the bunch length (bunching factor) and of the Laslett tune shifts for
the cases, corresponding to the matching of the longitudinal ring acceptance and of the
injected bunch emittance also indicate that the reasonable region for the momentum
spreads of injected bunches lies below 0.03 o/oo (see in Fig.2.10).

If the linear charge density of the bunch is not small, its longitudinal electric �eld can
substantially decrease the gradient of the accelerating �eld within the bunch changing the
matching conditions. If �(z) is the linear particle density in the bunch and provided that
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Figure 2.8: Dependence of the synchrotron tune matching the phase space ellipse (�s = 3
(keV/u)�ns) on the injected bunch momentum spread. Upper solid line { W =10 MeV/u,
lower { W =5 MeV/u, dashed line shows the stability limit �s = 1=�.
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Figure 2.9: Dependence of the RF-amplitude (V sin(�s)) corresponding to the tunes in
Fig.2.8 on the injected bunch momentum spread. Upper line { W =10 MeV/u, h = 994,
lower line { W =5 MeV/u, h = 1400.
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Figure 2.10: Dependencies of the bunch length (2�b), bunching factor (B = 2h�b=T0) and
of the Laslett tune shift in cases of longitudinal phase space matching on the momentum
spread of injected bunches. Solid lines {W =5 MeV/u, h = 1400, symbols { W =10
MeV/u, h = 994.

the bunch length (�s) substantially exceeds the pipe radius (l?), the longitudinal electric
space charge �eld inside the bunch reads 1

E =
ZNe�


2
d�

dz
; � = 1 + 2 ln

�
l?
a

�
: (2.22)

Here, a is the beam radius. For given acceleration voltage U = V cos(�s) [�s is the
RF-phase of the synchronous particle] and number of particles in the bunch (N) the
synchrotron oscillations of ions become unstable, if the bunch length is shorter than its
threshold value. Assuming e.g. a parabolic linear density in the bunch

�(z) =
3

4�s

�
1� z2

�2s

�
;

we �nd (see, for instance, in Appendix A.2):
1In the alternating focusing channels the beam cross section presents an ellipse

x2

�2x
+

y2

�2y
� 1:

In this case, the factor � in Eq(2.22) will read

� = 1 + 2 ln

�
2l?

�x + �y

�
:

However, in, for example, FODO channels the modulation of the sum �x + �y is usually very weak. So
that we can use the simpli�ed expression for � from Eq.(2.22).
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�th =

�
3

2
mpc

2ZNrp�R0�RF

2eV sin(�s)

�1=3

: (2.23)

Note, that for non relativistic particles (W � mpc
2) this threshold bunch length very

weakly depends on the ion kinetic energy. It means that for a given ratio of N=(V sin�s),
after acceleration of ions till the energy ofWf=125 MeV/u the value of �th will be approx-
imately same as that for injected bunches. Correspondingly, if the longitudinal emittances
of the bunches are not increased during this acceleration and provided that their lengths
were set close to �th, the bunch momentum spread (p�Æ) after acceleration will have the
safe values as that at the injection energy, while the values of �Æ will decrease (pin=pf)
times.

Note also that after the multiturn injection in the same bucket, the number of particles
in a bunch will increase proportional to number of injections N ! Nninj. Correspond-
ingly, for a given amplitude of RF-voltage (V ) the value of �th will increase proportionally

to n
1=3
inj . For example, for the bunch obtained after 20-turn injection (ninj = 20) the value

of �th will increase by the factor of about 2.71. To keep during injection the value of �th
unaltered, the amplitude of the RF-voltage should increase proportional to the number
of particles in the bunch.

For the stable synchrotron oscillations (�s > �th) the e�ect of the space charge �eld
modi�es the second equation in (2.21) in the following way

�2s

s
1� �3th

�3s
= �20 =

��s�

2�2�sp
: (2.24)

It has the root �s ' �th, if the bunch length calculated neglecting the space charge �elds
(�0) is much smaller than �th. Due to the conservation of the phase space volume the
bunch momentum spread in such a case is evaluated using

�Æ ' �s
�p�th

: (2.25)

For the discussed synchrotron we have f inRF = 36 MHz so that the number of ions in a
single injected bunch is N = I=(Zef inRF ) ' 6:51 � 108. Taking l? = 3

p
�?�av and as �s,

for example, �s = �=6, we obtain 2

Win �inRF �th �Æ B = 2�th=�
in
RF �0 �Æ0 V �s

MeV/u cm cm o/oo cm o/oo MV
5 86 17.35 0.017 0.4 3.5 0.084 1.2 0.018
10 121 20 0.01 0.33 3.9 0.053 1 0.0096

In order to avoid uncontrollable transformations of the longitudinal phase space volume
in the synchrotron, it seems to be reasonable to prepare bunches with such longitudinal
and momentum widths prior to injection.

2The value �s in this table was calculated accounting its reduction due to the bunch space charge.
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2.6 Acceleration

In order to suppress intensity limitations which will be discussed below, it is reasonable
to accelerate the beam as fast as possible. If we assume a linear increase in time of the
guiding magnetic �eld of the synchrotron

B(t) = Bin +
Bf � Bin

�t
t; (2.26)

the required acceleration voltage U = V cos(�s) reads (see, e.g. in Appendix A.1)

U = 300 ([BR]f � [BR]in)
�

c�t
: (2.27)

Here, �t is the acceleration time, Bin is the value of the magnetic �eld at the injected
energy and Bf is its �nal value. For the U

4+ions accelerated to the kinetic energy Wf =
125 MeV/u during, for instance, �t = 0:1 s, we �nd

Win (BR)in U (fRF )f
MeV/u Tm MV MHz
5 19.23 0.97 164.69
10 27.23 0.873 116.9

The last column in this table de�nes the RF-frequencies at the extraction energy (W = 125
MeV/u) assuming that at injection energies this frequency is 36 MHz.

During the acceleration the azimuthal length of the bucket depends on the value of
the synchronous phase and, generally is shorter than �RF (see, e.g. in Fig.2.11).
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Figure 2.11: Dependence of the bucket length on the synchronous phase. W =10 MeV/u,
�RF = 121 cm.
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Correspondingly, during acceleration the linear densities of the bunches increase. That
may pose additional limitations on the parameters of the accelerating RF-system. If we
de�ne as �1 the phase corresponding to the right end of the bucket, then the azimuthal
length of the bucket reads

�l = �RF
�1 + �s
2�

: (2.28)

For a given value of the bunching factor

B =
2�s
�l

=
2�s
�RF

2�

�1 + �s

Eq.(2.23) de�nes the minimum amplitude RF-voltage, which overcomes the ion repulsions
for a given value of the synchronous phase

V (�s) =
3

2
mpc

2 ZNrp�R0�RF

2e�3s(�s) sin(�s)

(2.29)

On the other hand, if the acceleration is made using a single RF-station in the ring, this
value should not exceed the threshold value corresponding to the stability criterion of the
synchrotron oscillations

�2s =
ZeV sin(�s)h�

A2�pv
<

1

�2
: (2.30)

For a high intensity beam, the value �s for incoherent synchrotron oscillations is small due
to compensation of the RF-voltage by the space charge �elds of bunches. However, the
stability criterion in Eq.(2.30) should also be held for coherent synchrotron oscillations
of bunches. Since the space charge �elds do not perturb the dipole coherent oscillations,
the stability criterion of these oscillations (��s < 1, one RF-station on the closed orbit)
limit the number of particles in a bunch. Assuming a uniform �lling pattern of bunches
in the beam and de�ning the total number of ions in the beam as Nt = Nh, we �nd the
following expression for the threshold number of ions in the beam

Nt � 8

3

A
3(v=c)2�3s(�s)

Z2rp����RF
: (2.31)

As is seen from Fig.2.12, the operations with the beams containing more than 1012 of
U4+ ions are possible only in the case, when the bunch factor exceeds B = 0:5. The
threshold number of particles in the beam can exceed 1013, if the bunch factor is larger
than B =0.7. However, the acceleration rate in this case is very low. For example, as
is seen from Fig.2.13, for the bunch factor B = 0:9 the threshold number of particles
exceeds 1013, if �s = 0:45�. Relevant threshold amplitude of accelerating voltage is
approximately V cos(�s) = 110 kV. So that the required acceleration time till the energy
W = 125 MeV/u is rather large �t = 0:9 s.

The acceleration times can be decreased increasing the number of RF-stations in the
ring. For example, if ions are accelerated using two identical RF-stations placed in the
opposite straight sections of the ring, the threshold number of particles in Eq.(2.31)
increases twice. As is seen from Fig.2.14, it well exceeds 1013 starting from �s = 0:4�.
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Figure 2.12: Dependencies of the threshold number of particles in the beam (Nh) on the
synchronous phase. From top to bottom B = 0:9, 0.7, 0.5 and 0.3; U4+�ions, W =10
MeV/u, �RF = 121 cm, one RF-station.
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Figure 2.13: Dependencies of the threshold RF-amplitude (full circles) and of the acceler-
ating voltage on the synchronous phase. U4+�ions, B = 0:9, W =10 MeV/u, �RF = 121
cm, one RF-station.
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The required accelerating voltage in this case is V cos(�s) ' 500 kV. So that ions will be
accelerated till the energy 125 MeV/u during �t = 0:17 s, which is quite acceptable.
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Figure 2.14: Same as in Fig.2.13, but the beam is accelerated using two identical RF-
stations.

As is seen from Fig.2.14, the stability condition for the dipole synchrotron coherent
oscillations for the low-intensity beam (Nt = 1012 of U4+ ions) holds well in a wide region
of the synchronous phases. For this beam intensity, the value �s = 0:4� and B = 0:5
seem to be reasonable(Fig.2.15). In this region the required amplitude of the RF-voltage
is about 600 kV, while the accelerating voltage is 300 kV. The threshold bunch length
for this value of the synchronous phase is 20 cm. With this accelerating voltage the
acceleration time between the energies Win = 10 MeV/u and Wf = 125 MeV/u is about
0.3 s.

For the beam containing 1013 of U4+ ions about same acceleration rate (380 kV/turn,
the acceleration time �t = 0:22 s) will be achieved, if the synchronous phase is set
�s = 0:46� and the bunching factor B = 0:7. The required amplitude of the RF-voltage
of a single station is about 1.56 MV (see in Fig.2.16). The threshold bunch length for this
value of the synchronous phase is about 33.5 cm.

2.7 Preliminary parameter set in the bunch compres-

sion mode

In our calculations below we shall take as a bases the case, when the injection energy of
the U4+ ions is 10 MeV/u. In this case, the requirements of the simultaneous stability of
coherent and incoherent synchrotron oscillations of injected ions do not limit a possibility
of operations with the beam containing 1013 of U4+ ions.
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Figure 2.15: Dependencies of the amplitude of the RF-voltage (solid line) and of the
accelerating voltage (V cos[�s]; symbols) on the synchronous phase. Number of ions in
the beam 1012 of U4+�ions, W =10 MeV/u, �RF = 121 cm, B = 0:5.
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Figure 2.16: Same as in Fig.2.13, but the beam is accelerated using two identical RF-
stations and B = 0:7.
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Prior to the discussion of the parameter sets, we note that in the beam compression
operation mode at least two RF systems are necessary. The acceleration RF system
should enable the injection in the multiple bunches and their subsequent acceleration
from injection energy to the �nal energy. To enable high intensity operations this system
should contain at least two RF-stations. Another RF system should enable the energy
modulation of the ions in the single bunch prior its compression. These RF systems
have very di�erent functions so that an optimization of the system design may require
contradictional properties, if these functions will be realized in one system. As we already
saw, the beam intensity in the synchrotron is high for about all steps of the operation
cycle. Apart from the limitations due to space charge forces, we expect strong e�ects due
to the �elds, which the beam induced in surrounding electrodes. More close inspection
shows, that one of the main contributions in these limitations occur due to interactions of
bunches with the RF system of the synchrotron. These problems are eliminated, if in one
of the straight sections of the ring the beam can go through di�erent beam lines, so that
it can see only one RF system. Another problem arises during the bunch compression
operation. The bunch length decreases during its compression by a factor of about 1000.
Correspondingly, the local bunch current increases from about 1 A at the beginning of
the compression till about 1 kA after compression. So high values of the local bunch
current may result in strong limitations on the bunch performance due to the bunch wake
�elds in the energy modulation RF system. On the other hand and as we shall see in
Chapter 4, almost all necessary energy modulation occurs during the period, when the
bunch length reduces less than twice. In order to avoid additional perturbations of the
ion motions due their interactions with the �elds induced in the energy modulation RF
system, it is reasonable to pass the beam in the RF free space. As we shall see, the
remaining reduction of the bunch length may take several tens turns in the synchrotron.

If we summarize all three options, we come to the necessity to have in the synchrotron
at least two long straight sections. One of these straight sections contains three beam
lines. One for the accelerating RF system, a second containing the energy modulation
RF system, and a third is the RF-free straight section (Fig.2.17). The opposite straight
section has two beam lines: one for the second accelerating RF-station and the injection
system, while the second is the RF-free beam line for the extraction of the compressed
ion bunch. The switching of the beam trajectory between these bypasses must be done
after acceleration of ions during a single turn in the ring and hence pulsed dipoles must be
used for this purpose. Required parameters of these dipoles will be discussed in Section
5.3. Here we note that switching of the beam between the lines demands certain time
intervals, when no bunches should pass these magnets. Adopting that switching can be
done during 0.8 �s (10 % of the closed orbit perimeter), we conclude that the beam �lling
pattern should contain the empty of bunches gap with the length of 10% of the closed
orbit perimeter.. In the high intensity operational mode the required number of particles
in the beam is obtained using the 20-turn injection. It takes about 0.5 ms. New bunches
are deposited in the horizontal betatron phase space. In the longitudinal phase space new
bunches are accepted in the same buckets as those already collected. To compensate the
longitudinal space charge repulsion of ions the amplitude of RF voltage should rise during
this period linearly from 150 kV till 3 MV. For the designed accelerating RF system the
required modulation of the RF voltage does not limit the ring performance.
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Figure 2.17: Schematic layout of the synchrotron with the separated energy modulation
and �nal bunch compression.

Results of the calculations described in the previous Sections of this Chapter can be
summarized in the following Tables 2.1 and 2.2 listing the synchrotron parameters, when
it is operated in the bunch compression mode. However, it is necessary to note that these
parameters or some of them can be changed, if necessary, during a subsequent design
study.
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Table 2.1: Preliminary general parameter set for the U4+-synchrotron operating in the
bunch compression mode.

Circumference m 1200
Injection energy MeV/u 10
Extraction energy MeV/u 125
Injected ions/bunch 1/108 6.51
Injected ions/turn 1/1011 6.41
BRin Tm 27.23
BRf Tm 100
Acceleration time s 0.3
Revolution period (injection energy) �s 27.6
Revolution period (�nal energy) �s 8.5
Harmonic number 994
Acceleration rate keV/turn 300
Average �-function m 15
Accepted momentum spread % �1.4
Betatron acceptance mmmrad 420
(��L)inj 0.215
(��L)f 0.06
Vacuum nTorr below 0.01
Beam lifetime (injection) s 2.1
Beam lifetime (extraction) s 5.2
Beam intensity loss factor % 10

Table 2.2: Preliminary parameter set for the U4+-synchrotron operating in the low and
high intensity bunch compression modes.

Number of ions 1012 1013

Number of injections/bunch 2 20
RF-amplitude MV 0.6 1.56
Synchronous phase 0.4� 0.46�
Transverse emittance (inv.) mmmrad 2 20
Transverse emittance (non-inv.) mmmrad 13.8 138
Bunch length (�s; injection) m 0.2 0.335
Momentum spread o/oo 0.01 0.008
Bunching factor (2�s=�RF ) 0.5 0.7
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Chapter 3

Intensity Limitations Due to

Intrabeam Scatterings

In this Chapter we discuss possible limitations on the beam performance due to scatterings
of ions in the bunch. For the case, when the ions have electron shells both inelastic
and elastic processes may limit the beam intensity. The inelastic scatterings due to ion
charge exchange may result in the particle losses from the beam and in the corresponding
reduction of the beam lifetime. Elastic scatterings may cause undesirable redistributions
of particles in their phase space. In particular, for the discussed ring it can result in a
blowup of the longitudinal phase space of the bunches.

3.1 Lifetime due to charge exchange and ionization

Since we want to operate the ring with U4+ ions, their collisions may result in the charge
transfer reactions:

U4+ +U4+ ! U3+ +U5+;

and in the ionization reactions

U4+ +U4+ ! U5+ +U4+ + e:

Due to small charges of ions the relative variations of the curvature radius of the closed
orbits for the produced ions are large (�R�1=R = 1=(Z � 1)), so that these ions will be
lost from the beam resulting in the reductions of the lifetimes of bunches .

The rate of the ion losses from the bunch due to charge changing collisions of ions can
be estimated using

dN

dt
= �N�bv

r
�

�av
�tot(Wcol); (3.1)

Here, N is the number of ions in the bunch, v is the ion velocity, � is the bunch emittance,
�av ' R0=�? is the average value of the ��function of the ring, �tot is the total cross
section of the charge exchange processes due to collisions of ions, �b is the bunch density

�b =
Nh

���avB�
=

Nh(v=c)

��0�avB�
: (3.2)
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The total cross section (�tot) describing the particle losses from the beam due to charge
changing collisions of ions are expressed in terms of the cross section for the charge
transfer (�CT ) and for ionization (�I) in the following way. Since colliding ions are identical
particles the values �CT and �I should be doubled. Next, due to a charge transfer collision
the beam loses two ions. Resulting expression for �tot reads

�tot = 2[2�CT + �I ]: (3.3)

Particular behavior of the functions �CT (Wcol) and �I(Wcol) is discussed in the Appendix
B. Using Eqs.(3.1) and (3.2), we �nd

dN

dt
= �N2hc�tot

�B�

s
(v=c)3

�0�3av
; (3.4)

or

N(t) =
Nin

1 + t=�
; (3.5)

where Nin is the initial number of particles in a bunch, and

� =
�B�

Nt�tot(Wcol)c

s
�0�3av
(v=c)3

; Nt = Ninh (3.6)

is the lifetime of the beam. The cross section �tot in these equations depends on the
collision energy, which was calculated according to

Wcol ' 4:62� 105
(v=c)�0
�av

[keV=u]: (3.7)

Using these equations and the data from Fig.B.1 or, from the Table B.2 (Appendix
B), we can estimate dependence of the lifetime on the beam parameters. One of the
most important is the dependence of the lifetime on the strength of the lattice focusing
assuming the beam emittances and initial beam intensities be given. As is seen from
Fig.3.1, the lifetime generally increases with an increase in �av (lower collision frequencies
and collision energies). For a given �av the lifetime decreases with an increase in the ion
energy. For given Nt=�0 and �av, the lifetime of the low intensity beam (e.g. Nt = 1012

ions) is higher than that of the high intensity beam.
We already saw in Section 2.2 that even with a vacuum in the chamber of 0.01 nTorr,

the lifetime of the U4+ ion beam due to charge changing collisions of ions with the atoms
of the residual gas is limited to several seconds. A comparison of these numbers with data
in Fig.3.1 shows that in the discussed ring charge changing collisions of U4+ ions in the
beam give negligible small contributions to the beam ion loss rate for all discussed here
conditions 1.

1Indeed, the common ion loss rate due to inelastic IBS and due to ion charge changing collisions with
the residual gas atoms reads

dN

dt
= �aN2 �

N

�0
;
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Figure 3.1: Dependence of the beam lifetime due to IBS charge exchange on �av. Upper
curve { 10 MeV/u, bottom { 125 MeV/u, �0 = 20 mmmrad (20-turn injection), Nt = 1013

3.2 Elastic intrabeam scattering

Elastic collisions of ions redistribute the partial phase space volumes in the bunches. Such
a redistribution can be undesirable, if we want to avoid, for example, the blow-up of the
ion momentum spread, or the longitudinal bunch emittances.

For the sake of simplicity we estimate the growth-rates of ion bunches due to intrabeam
scattering (IBS) assuming the smoothed focusing approximation. For same reason, we
shall also assume �x = �z = � ' R0=� and D ' R0=�

2, where R0 = �=2� is the average
radius of the closed orbit, D is the average value of the ring dispersion function and
�x = �z = � denotes the tune of betatron oscillations. With these assumptions the partial

where �0 is the lifetime due to charge changing collisions with the gas atoms. Integrating this equation,
we obtain

N =
N0e

�t=�0

1 +
�0
�

�
1� e�t=�0

� ;
Initial behavior of this function (t� �0) coincides with that predicted in Eq.(3.5)

N =
N0

1 +
t

�

; t� �0:

The last equation may describe a real decrease in the beam intensity only in the case, when � � �0. In
the inverse region of the beam parameters (�0 � �), the inelastic IBS give small contributions to the ion
loss rate

N = N0e
�t=�0

h
1�

�0
�

�
1� e�t=�0

�i
; �0 � �:
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growth-rates can be written in the following form (see, e.g. in Ref.[1], or in Appendix C):

1

�z
=
d ln �z
dt

' �N(Z2=A)2r2pcLIBS

4�
2�20�sÆ
F (q); (3.8)

1

�x
=
N(Z2=A)2r2pcLIBS

2�
2�20�sÆ

�

2D2

�2
� 1

2

�
F (q); (3.9)

1

�s
=
d ln(Æ2)

dt
=
N(Z2=A)2r2pcLIBS

2�
2�20�sÆ

�

2�

Æ2�

�
F (q) (3.10)

Another important value describing IBS relaxation in the bunch is the sum of the growth-
rates

� =
1

�z
+

1

�x
+

1

�s

=
N(Z2=A)2r2pcLIBS

2�
2�20�sÆ
qF (q): (3.11)

Here, F (q) is a universal function:

F (q) =

Z 1

0

1� 3z2

1 + qz2
dz =

8>><
>>:

[3 + q] arctan
p
q � 3

p
q�p

q
�3 ; q > 0;

3

p
+
p� 3

2p3=2
ln

�p
p+ 1

1�pp
�
; p = �q > 0;

(3.12)

q =

2�

Æ2�
+

2D2

�2
� 1; (3.13)

N is the number of particles in the bunch, rp = e2=(mpc
2) is the classical radius of

the proton, �0 = 
(v=c)�x;z denotes either the horizontal, or vertical invariant bunch
emittances, LIBS ' 5 is the so-called Coulomb logarithm, �s and Æ are the rms bunch
length and the rms (relative) bunch momentum spread. The last values are related to the
longitudinal bunch emittance

�s = 
mpv�sÆ: (3.14)

In particular, IBS relaxation may reach an equilibrium, if � = 0. According to Eqs.(3.12)
and (3.13) it occurs, when q = 0, or when


2�

Æ2�
= 1� 
2D2

�2
' 1� 
2


2tr
; 
tr ' �

D
' � (3.15)

For our estimations we take �0 = 10 � 10�4 cm, � = 1200 m and � = 20 m, which
corresponds to � ' 9:55 and D ' 2 m. We also assume that the ions equally populate
h = 994 bunches of the beam, so that, if Nt is the total number of ions in the beam,
the number of ions in the bunch is N = Nt=h. Taking Nt = 1013, we �nd that N '
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1:1 � 1010. For ion kinetic energies within the range W = 10 MeV/u (injection) till
W = 125 MeV/u (extraction energy) we have 
 ' 1:01 � 1:13, � ' (6:1 � 1:87) � 10�3

cm. It means that during acceleration and preceding/subsequent transformations of the
beam in its longitudinal phase space the value

p
�=� varies within the range

p
�=� '

1:74 � 1mrad. An equilibrium may occur only in the case, when the momentum spread
in a bunch is relatively high (Æ ' 10�3). For lower values of Æ the parameter q is positive
(see in Fig.3.2 and 3.4 left). According to Eqs.(3.8) { (3.10) calculations of the partial
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Figure 3.2: Dependences of the factor q (left) and of the bunching factor B = �s
p
2�=�RF

on Æ. The rms bunch length was calculated assuming �s = const = 3 [(keV/u)�ns];
W =10 MeV/u.

growth-rates due to IBS also demands the knowledge of the bunch rms length (�s). For
our estimations we adopted that acceleration and required beam transformations do not
increase the longitudinal bunch emittance. So that �s(W; Æ) can be calculated using
Eq.(3.14). Resulting dependencies of the bunching factors B = �s

p
2�=�RF are shown in

Figs.3.2 and 3.4 (right �gures).
If we neglect the e�ects of the bunch space charge on IBS, these assumptions enable

the calculations of the partial growth-rates of ion bunches due to IBS (Fig. 3.3 and 3.5).
According to these data, during acceleration and preliminary beam transformations IBS
most strongly a�ects the longitudinal phase space of bunches. However, even in this case
and for the worst case, when Æ = 10�5, the growth-time (�s) is about 80 s at injection
energy (Fig.3.3) and is about 40 s at the extraction energy (Fig.3.5). These calculations
show that IBS does not limit the beam performance in the discussed synchrotron.
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Figure 3.3: Dependences of the partial growth-times and of 1=� on Æ. Ion kinetic energy
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Figure 3.4: Same as in Fig.3.2, but W =125 MeV/u.
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Figure 3.5: Same as in Fig.3.3 but W=125 MeV/u.
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Chapter 4

Bunch Compression

In this Chapter we discuss the transformations of the multi-bunched beam in a single
short bunch. As we saw, even in the case when the pressure of the residual gas is about
0.01 nTorr, the lifetime of the U4+ ion beam due to charge-changing scatterings is very
short. It ranges between 2 s for W = 10 MeV/u and about 5 s for W = 125 MeV/u. We
adopt that in order to decrease the particle losses during the transformation and in order
to reduce e�ects of the beam intensity limitations, the re-bunching should be performed
at the top energy of the synchrotron (W = 125 MeV/u). In order to reduce the blow-up
of the longitudinal beam emittance the debunching should be done using adiabatically
slow variations of the RF-voltage. Due to very small values of the longitudinal emittances
of injected and accelerated bunches as well as due to very short lifetime of U4+ ions we
cannot use the bunch compression scenario as it was described in the beginning of Section
2.4. Instead, due to small values of the bunch momentum spread after debunching we can
use the following scenario:

1. Debunching by slow decreasing of the accelerating RF-voltage.

2. The bunch precompression/compression due to �=2-bunch rotation in the longitu-
dinal phase space using the RF-voltage with high amplitudes.

The time scales for these transformations are determined by the values of relevant
frequencies of small synchrotron oscillations

!s = !0�s; �s =

s
hZeV �

2�Apv
; �s =

�

2
: (4.1)

The �rst step in the list is performed decreasing the amplitude of the RF-voltage in the
accelerating RF-system. As we shall see, due to high harmonic number used in this system
the required time intervals for debunching can be rather short. During the second step
the bunching is performed under conditions, where the longitudinal phase space of the
beam is strongly mismatched to the longitudinal ring acceptance. That can be done using
high amplitudes (of the order 1 MV) of the RF-voltages of the compression RF-system.
Such voltages are necessary to overcome the longitudinal space charge repulsion of ions
as well as other perturbations due to electromagnetic �elds induced by the bunch in the
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surrounding electrodes (or, cavities), when the bunch length decreases. Provided that
the RF-voltage can be set high enough, the bunch compression may take several hundred
turns in the ring (corresponding time intervals are in the millisecond range).

Although some steps during re-bunching may occur under conditions where the syn-
chrotron oscillations of particles are nonlinear, we shall use a heuristic model, where the
bunching, or initial stage of debunching occur due to orthogonal transformations of small
synchrotron oscillations. If we take as an independent variable the azimuth along the
closed orbit � and if f0(z0; z

0
0) is initial distribution function in the longitudinal phase

space, while the oscillations are described using a symplectic transformation

z0 = z0(z; z
0; �); z00 = z00(z; z

0; �);

���� @z0
@z

@z0
@z0

@z0

0

@z

@z0

0

@z0

���� = 1; (4.2)

the instantaneous distribution function reads

f(z; z0; �) = f0(z0[z; z
0; �]; z00[z; z

0; �]): (4.3)

In our heuristic model we assume that the instantaneous position of a particle is de�ned
by a linear transformation�

z
z0

�
0

=

�
a(�) b(�)
c(�) d(�)

��
z
z0

�
; ad� bc = 1: (4.4)

In the case of the bunch compression, such transformations are realized provided that the
RF-voltage linearly decreases with the ion synchrotron phase 1

V (�) = �V0
�
(�� 2m�); (2m� 1)� < � < (2m+ 1)�; m = 0;�1; : : :

If f0(z0; z
0
0) is a Gaussian function 2

f0(z0; z
0
0) =

1

2��Æ
exp

�
� z20
2�2

� (z00)
2

2Æ2

�
; (4.5)

then the instantaneous rms bunch length and momentum spread can be calculated using
(see in Appendix E.1 for more detail)

�2(�) = �2d2 + Æ2b2; Æ2(�) = Æ2a2 + �2c2: (4.6)

1Note, that with such a sawtooth shaped RF-voltage the synchrotron tune reads

�2s =

s
ZeV0�

2�2Apv
:

2Indeed, the following results will hold for any distribution function described by the equation

f0 = f0

�
z20
�2

+
z020
Æ2

�
:
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If the longitudinal displacements of particles inside the beam (z) are measured in the
units of length, the rms width of z0 (the value of Æ) is measured in the same units. The
relationship between Æ and the rms bunch momentum spread (�Æ) reads

�Æ =
Æ

R0�
;

so that

�(�) =

q
�2d2 + (R0��Æ)

2 b2 (4.7)

and

�Æ(�) =

s
�2Æa

2 +
�2c2

R2
0�

2
: (4.8)

4.1 Debunching

The beam debunching occurs adiabatically slow, if e.g. the RF-voltage is turned-o�
according to an exponential law

V (�) = V0e
��=�0 : (4.9)

If the bunching factor before debunching is small, the initial period of the process in a low
intensity beam is described by the following transformation (see e.g. in Appendix E.2)

�
z
z0

�
0

= ��0

�
J0(k) N0(k)
�sJ1(k) �sN1(k)

�� ��suN1(ku) N0(ku)
�suJ1(ku) �J0(ku)

��
z
z0

�
(4.10)

Here, k = 2�s�0, u = exp(��=[2�0]) and

�s =

s
hZeV0�

2�Apv
;

Jn(x) and Nn(x) are correspondingly the Bessel and Neumann functions [10]. For this
case, the functions a, b, c and d which were de�ned in Eq.(4.4) read where

a = ��0�su [J1(ku)N0(k)�N1(ku)J0(k)] ;

b = ��0 [J0(k)N0(ku)�N0(k)J0(ku)] ;

c = ��0�
2
su [J1(ku)N1(k)�N1(ku)J1(k)] ;

d = ��0�s [J1(k)N0(ku)�N1(k)J0(ku)] ;

while

�(�) =
p
�2d2 + Æ2b2; Æ(�) =

p
Æ2a2 + �2c2: (4.11)
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In this case, the debunching will be adiabatically slow, if k� 1. In the region, where ku
also is large (ku� 1), we can use asymptotes

J0(k) '
r

2

�k
cos
�
k � �

4

�
; J1(k) '

r
2

�k
sin
�
k � �

4

�
;

N0(k) '
r

2

�k
sin
�
k � �

4

�
; N1(k) ' �

r
2

�k
cos
�
k � �

4

�
;

and

J0(ku) '
r

2

�ku
cos
�
ku� �

4

�
; J1(ku) '

r
2

�ku
sin
�
ku� �

4

�
;

N0(k) '
r

2

�ku
sin
�
ku� �

4

�
; N1(ku) ' �

r
2

�ku
cos
�
ku� �

4

�
:

Then, simple calculations result in (Æ = �s�)

�(�) = � exp

�
�

4�0

�
; Æ(�) = Æ exp

�
� �

4�0

�
: (4.12)

So that the bunch length exponentially increase, while the bunch momentum spread
exponentially decrease in time.

We note also another interesting feature of solutions in Eq.(4.10). In a more deep
asymptotic region, where ku � 1, we should use the following asymptotes of the Bessel
functions

J0(ku) ' 1; N0(ku) ' 2

�
J0(ku)

�
ln
ku

2
+ C

�
+O(k2u2) ' � 2�

��0

and

J1(ku) ' 0; N1(ku) ' 2

�
J1(ku)

�
ln
ku

2
+ C

�
� 2

�ku
+O(ku) ' � 2

�ku
:

In this region the bunch length linearly increases in time

�(�) ' 2��

r
�s
��0

; (4.13)

while the bunch momentum spread tends to a constant value

Æ(�) ' Æp
��s�0

: (4.14)

These asymptotes correspond to the region, where the RF-voltage is actually turned o�.
Both debunching and bunching were simulated using the multiparticle tracking code.

After setting up initial conditions for particles, the codes tracked the particle synchrotron
oscillations using the following equations for synchrotron coordinates of the particle:

�n+1 = �n + 2�Pn; Pn+1 = Pn � ZeVn�

Apv
sin(h�n+1); P = �

�p

p
: (4.15)
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No space charge phenomena were taken into account in these simulations.
The adiabatic debunching was simulated assuming an exponential decay of the RF-

voltage amplitude after acceleration

Vn = V0 exp(�n=n0); n0 = 10�=�s:

The particles were uniformly distributed to have 10 particles for each of 994 bunches.
Within a bunch the initial conditions for particles were generated to have the uniform
distribution in the synchrotron phases with the bunching factor B = 0:3, and the Gaussian
distribution in P with the rms width �Æ = 1� 10�4.
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Figure 4.1: Momentum distributions in the initial bunches (full dots) and in the debunched
beam (solid steps). V0 = 300 kV; the dotted line shows a Gaussian �t of the �nal
momentum distribution (�f = 3:12� 10�5).

As seen from Fig. 4.1, due to debunching the beam momentum distribution shrinks
till approximately 3.12�10�5. Because of the high value of the harmonic number the de-
bunching takes only 21 ms, so that it does not limit the repetition rate of the synchrotron.

A small value of the momentum spread in the beam after its debunching may pose
limitations on the acceptable values of the synchrotron vacuum pipe impedance. In stor-
age rings and particle accelerators working above the transition energy of the ring the
threshold values of the longitudinal coupling impedance, or of the beam current are de-
termined by the so-called Keil-Schnell criterion (see in Ref. [12]). In our case, the ring
will work entirely below its transition energy, where the widths of the so-called stability
diagram can substantially exceed that de�ned by the Keil-Schnell criterion.

Namely, for the coasting beam with a Gaussian momentum distribution

f0(�p) =
Np
2��Æ

exp

�
� [�p=p]

2

2�2Æ

�
:
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the equation de�ning the stability diagram of the longitudinal coherent oscillations reads
[8] �

Z2

A

�
Ne2!0
2�pv��2Æ

��iZn
n

�
=

1

F (z)
; (4.16)

where

F (z) =
1p
2�

Z 1

�1

dxxe�x
2=2

z � x
; Im(z) > 0: (4.17)

The stability diagram calculated for the coasting beam containing 1013 of U4+ ions with
the kinetic energy 125 MeV/u is shown in Fig.4.2. Inspecting this plot we have to take into
account that without other electromagnetic perturbation the perfectly conducting pipe of
the radius l? and containing the beam with the radius a, has the capacitive impedance�

Zn
n

�
=

30

�
2

�
1 + 2 ln

�
l?
a

��
[Ohm]:

Taking e.g. l? = 5cm (the average beam rms radius is about 1.4 cm), we �nd (Zn=n) '
175 Ohm. If this is the only reactive part of the pipe impedance, the active part of
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Figure 4.2: Stability diagram for coherent oscillations of the coasting beam after debunch-
ing. The beam contains 1013 of ions U4+, kinetic energy 125 MeV/u, slip factor 0.77, outer
curve { �Æ = 3:5 � 10�5, inner curve { �Æ = 1 � 10�5. Only upper half of the diagrams
are shown in the graph.

Zn=n is limited by the value of about 1 Ohm. This value is not high but it is typical for
the coupling impedances of the modern synchrotrons and storage rings. Note also, that
inductive impedance of about 150 Ohm shifts the working point to the region, where the
width of the stability diagram is 10 times wider.
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As we shall see, the bunch precompression time can be substantially decreased, if
after debunching its momentum spread is decreased till the value of about �Æ = 1� 10�5.
This number also �ts well the longitudinal phase space matching conditions of injected
bunches. Due to a quadratic dependences of the widths of the stability diagram on the
beam momentum spread, the limitations on the wall impedance will be much more severe
(inner curve in Fig.4.2).

For a given closed orbit perimeter and number of particles in the beam, the width of
the discussed stability diagram varies proportional to p�2Æ (p). Taking into account that
Zn=n also varies proportional to 1=v, we conclude that e�ective width of the stability
diagram of the coasting beam will be more strongly limited, if the debunching will be
performed at the injection energy of particles. Say, at 10 MeV/u and �Æ = 10�4, the
vertical width of the diagram increase 3 times, but Zn=n also increase 3 times and becomes
about 500 Ohm. According to data shown in Fig.4.2, the acceptable value of the active
part of the impedance is then limited by the region Re(Zn)=n < 10�3 Ohm.

4.2 Prebunching

If after acceleration the bunches are uniformly distributed along the beam, then after
debunching the bunch compression should begin with the prebunching. To form a sin-
gle bunch that should start with the prebunching in the �rst harmonic of the revolution
frequency rising the RF-voltage adiabatically slow to avoid the blow-up of the longitu-
dinal beam emittance. A reasonable decrease in the bunch length during this period
is determined by the threshold value of the Laslett tune shift of the ring. After initial
prebunching, the RF-harmonic number can be increased to speed-up the bunch short-
ening. Prior discussion of particular results we note that a compression during a given
time interval may contradict to the necessity of obtaining a given (short) bunch length.
The problem is that prior to the bunching the beam already has some momentum spread.
During RF compression this momentum spread increases, which can limit the minimum
�nal bunch length from below. Although the compression of the beam with a long enough
gap in its �lling pattern does not need a special prebunching step, studying of this phe-
nomenon helps to clarify some signi�cant features of the longitudinal bunch compression.
In this Section we study of the precompression using adiabatic prebunching due to the
rise of the RF-voltage.

4.2.1 Prebunching due to exponentially increasing RF-voltage

Main features of the prebunching due to an increase in the RF-voltage can be studied
using the simpli�ed model described in the beginning of this Chapter. In the case, when a
harmonic RF-voltage is used for the precompression, such an analysis may have a heuristic
worth. However, prebunching may take place due to common e�ects of multiple harmonics
forming a linear dependence of the compression voltage on the distance inside the beam.
In such a case, the model will describe a real bunch compression.

Assuming an exponential increase in the amplitude of the RF-voltage
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�s(�) = �s exp

�
�

�0

�
;

we �nd that linear synchrotron oscillations are described using the following equations

�
z
z0

�
0

= ��0

�
J0(k) N0(k)

��sJ1(k) ��sN1(k)

�� ��suN1(ku) �N0(ku)
�suJ1(ku) J0(ku)

��
z
z0

�
; (4.18)

where k = 2�s�0 and u = e�=(2�0), Jm(x) and Nm(x) are correspondingly the Bessel and
Neumann functions of the order m. In this case, the functions a, b, c and d from Eq.(4.4)
read

a = ��s�0u fJ1(ku)N0(k)�N1(ku)J0(k)g ;
b = ��0 fJ0(ku)N0(k)�N0(ku)J0(k)g ;
c = ���2s�0u fJ1(ku)N1(k)�N1(ku)J1(k)g ;
d = ��s�0 fN1(k)J0(ku)�N0(ku)J1(k)g :

The bunch length and the beam momentum spread are calculated using

�(�) =
p
�2d2 + Æ2b2; Æ(�) =

p
Æ2a2 + �2c2: (4.19)

Simple calculations show that in the asymptotic region k � 1 and ku � 1 the bunch
momentum spread exponentially increases while the bunch length exponentially decays
(Fig.4.3).

More close inspection of data from Fig.4.3 shows the following features of such a
precompression. The desired precompression factor due to a systematic decrease in the
bunch length (about 1/12) is reached in about 0.07 s. However, due to strong mismatching
of the longitudinal phase trajectories of the bunch and the ring acceptance both the
bunch length and the bunch momentum spread are strongly modulated in time. Since
e�ects of the space charge �elds were ignored in our calculations, the calculations will
give reliable results only during the time intervals, when the bunch length exceeds the
value corresponding to the threshold values of the bunch space charge �elds (the desired
bunch length after precompression). According to data from Fig.4.3, for a beam with
a momentum spread of �Æ = 1 � 10�5 it occurs when the bunch length reaches its �rst
minimum (about 0.7 ms after beginning of the prebunching). However, due to mentioned
mismatching of the longitudinal phase space of the bunch the bunch momentum spread
at this time exceeds already about 1000 times its initial value ( at Fig.4.3, �Æ = 1�10�5).
Such a bunch cannot be used for the subsequent inertial compression.

More reliable parameters of the precompressed bunch can be obtained, if the initial
amplitude of the compressing RF-voltage is decreased till e.g. 5 V (Fig.4.4). In this
case, the bunch momentum spread initially blowups only twice so that the bunch can be
used for a subsequent stronger compression. However, the precompression time becomes
extraordinary long (the �rst minimum in the bunch length in Fig.4.4 is reached after
about 0.3 s).
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Figure 4.3: Dependences of the relative rms momentum spread (upper curve) and bunch
length (lower curve) on time during an exponential increase in the compression voltage.
U4+ ions, kinetic energy 125 MeV/u, slip factor 0.77, initial RF-voltage 1 MV, � = 600
m, Æ = 1� 10�5, k = 30, �s = 0:0029.
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Figure 4.4: Same as in Fig.4.3, but V0 = 5 V.
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From these calculations we conclude that the realistic way of the bunch precompression
during a reasonable short time providing reasonable values of the momentum spread in the
precompressed bunch is a quarter-period longitudinal phase space rotation corresponding
to initial parts in Figs.4.3 and 4.4. For example, if we take as initial amplitude of the
RF-voltage 200 V, then the bunch length reaches the value �(�) = 50 m after 0.05 s
(solid line in Fig.4.5). If initial value of the beam momentum spread is 10�5, the value
of the momentum spread after such a precompression is �Æ(�) ' 2 � 10�4 (solid line in
Fig.4.6). Open circles in Figs.4.5 and 4.6 show that prebunching of the beam with the
initial momentum spread Æ = 5 � 10�5 will be accompanied by smaller modulations of
Æ(�) but will also take substantially longer time.
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Figure 4.5: Dependences of the relative rms bunch length on time during an exponential
increase in the compression voltage. U4+ ions, kinetic energy 125 MeV/u, slip factor 0.77,
initial RF-voltage 200 V, � = 600 m, k = 30, �s = 4 � 10�5; solid line { Æ = 1 � 10�5,
open circles { Æ = 5� 10�5.

As we saw in Section 2.4, the �nal compression should provide the compression factor
X = 70. If the inertial compression method will be used for the �nal bunch compression,
that demands the following momentum modulation along the precompressed bunch

��(�) = X�Æ = 0:014;

or ÆW = pv��(�) ' 3:5 MeV/u. Such an energy modulation will be obtained when the
ions pass the RF-voltage with the following amplitude

V =
AÆW

Z
' 208 [MV]:

After this momentum modulation the �nal bunch compression demands the a drift length
of L ' 3:6 km, or about 3 turns in the ring.
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Figure 4.6: Dependences of the relative rms bunch momentum spread on time during an
exponential increase in the compression voltage. U4+ ions, kinetic energy 125 MeV/u,
slip factor 0.77, initial RF-voltage 200 V, � = 600 m, k = 30, �s = 4� 10�5; solid line {
Æ = 1� 10�5, open circles { Æ = 5� 10�5.

4.2.2 E�ects of the longitudinal space charge �elds on the pre-

compression

In the previous subsection the calculations of the bunch length and of the momentum
spread during the bunch compression were done neglecting e�ects of the transverse and
longitudinal space charge forces on the motion of ions. For the longitudinal motion the
strengths of these perturbations can be described in terms of a reduction of the syn-
chrotron tune by the space charge forces of the bunch. If we assume for the sake of
simplicity the parabolic linear density in the beam, the bunch length during compression
should exceed its threshold value (Appendix A.2)

�th(�) =

�
3

2
mpc

2ZNrp�R0�RF

2eV (�)

�1=3

:

If prebunching is performed in the �rst harmonic of the revolution frequency (�RF = �),
the amplitude of the RF-voltage should exceed the value

V (�) =
3

2e
mpc

2ZNrp�R0�


2�3th(�)
; � = 1 + 2 ln

l?
a
: (4.20)

According to data shown in Fig.4.7 for V = 200 V the space charge forces should be taken
into account if the bunch length approaches 600 m.

E�ects of the longitudinal space charge �elds on the bunch compression were studied
using numerical mapping of the following equations for the functions a(�), b(�), c(�), d(�),
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Figure 4.7: Dependences of the threshold RF-voltage (�s = 0) on the bunch length (2��s).
U4+ ions, kinetic energy 125 MeV/u, �RF = �.

�(�) and Æ(�): �
d
c

�
n+1

=Mn

�
d
c

�
n

;

�
d
c

�
0

=

�
1
0

�
; (4.21)

�
b
a

�
n+1

=Mn

�
b
a

�
n

;

�
b
a

�
0

=

�
0
1

�
; (4.22)

�n =

q
�20d

2
n + (Æ0R0�)

2 b2n; Æ(�) =

s
Æ20a

2
n +

�
�0
R0�

�2

c2n: (4.23)

Here, n marks the mapping step,

Mn =

0
@ cos[�sn��];

sin[�sn��]

�sn��sn sin[�sn��]; cos[�sn��]

1
A ; (4.24)

and

�2sn =
ZeVn�

2�Apv

�
1� (�th)

3
n

�3n

�
; (�th)n =

�
3

2
mpc

2ZNrp�R0�


2eVn

�1=3

: (4.25)

In the regions, where �n becomes smaller than (�th)n, the trigonometric functions in
Eq.(4.24) are replaced for the hyperbolic ones. In order to test if Eqs.(4.21) { (4.23)
simulate correctly the bunch compression, we compared the results of the mapping using
these equations obtained for the low intensity beam and for the case, when the amplitude
of the RF-voltage increases exponentially in time
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Vn = V0 exp

�
n��

�0

�
; n = 1; 2; : : : nmax

with results obtained using the analytic solutions (see in Eqs.(4.18) and (4.19)). Comparing

0,00 0,05 0,10 0,15

0,0

0,2

0,4

0,6

0,8

1,0

 

 

σ s(
t)

/ σ
(0

)

Time [s]

Figure 4.8: Dependences of the bunch length (�(t)=�(0)) on the time during exponential
increase of the amplitude of RF-voltage. No space charge forces, solid line { exact solution
using Eqs.(4.18) and (4.19), open circles { results of numerical mapping,W = 125 MeV/u,
V0 = 200 V, k = 10, �0 = 600 m, Æ0 = 1� 10�5.

in Figs.4.8 and 4.9 the curves depicted in the open circles (numerical solution) and in solid
line (calculated using Eqs.(4.18) and (4.19)) we �nd a good agreement between the results
of the mapping and of the analytic solution.

During the bunch compression in the low amplitude RF-�eld, the longitudinal space
charge of the beam �rst of all limits the available compression ratio.

As is seen in Fig.4.10 for the chosen RF voltage the space charge �elds hardly a�ect the
compression of the beam containing N = 1012 of U4+ ions. However, if the number of ions
is increased till N = 1013 the bunch cannot be compressed shorter than until �(t)=�0 '
0:3. In this case, the dependence of the bunch length on time becomes smoother, while
the wave length of its beatings increase. Inspecting the data in Fig.4.11, we see that in the
high intensity beam the bunch compression does not stop when the bunch length reaches
its threshold value. In particular, in Fig.4.11 the �rst minimum in �(t) occurs, when it
becomes about two times shorter than �th(t). During the period, when �(t) � �th(t), the
synchrotron oscillations of ions become unstable. For this reason, the time dependence of
the bunch momentum spread has additional minima around the points, where the bunch
length reaches its minimum value.

The required precompression depth (�=[2�s] ' 12) of the high intensity beam (N =
1013 of U4+ ions) demands higher initial voltages of the precompression RF-system. For
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Figure 4.9: Same as in Fig.4.8, but for the beam momentum spread.
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Figure 4.10: Dependences of the bunch length (�(t)=�(0)) on the time during exponential
increase of the amplitude of RF-voltage. Solid line { neglecting the beam space charge,
full circles { N = 1012of U4+ ions, open circles { N = 1013 of U4+ ions, W = 125 MeV/u,
V0 = 200 V, k = 10, �0 = 600 m, Æ0 = 1� 10�5.
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Figure 4.11: Dependences of the ratio (�(t)=�th(t)) on time during exponential increase
of the amplitude of RF-voltage. N = 1013 of U4+ ions, W = 125 MeV/u, V0 = 200 V,
k = 10, �0 = 600 m, Æ0 = 1� 10�5.
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Figure 4.12: Same as in Fig.4.10, but for the beam momentum spread.
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example, if we take V0 = 1 kV, the time dependence of the precompressed bunch length
(2�s=v) and of the rms bunch momentum spread will change as is shown in Figs.4.13 and
4.14.
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Figure 4.13: Dependences of the bunch length (2�s=v [ns]) on time during exponential
increase of the amplitude of RF-voltage. N = 1013 of U4+ ions, W = 125 MeV/u, V0 = 1
kV, k = 10, �0 = 600 m, Æ0 = 0:3� 10�5.

According to these data the required length of the precompressed bunch (�b ' 700
ns) is reached in approximately 22 ms, the rms momentum spread of the bunch at this
moment is about 2�10�4. These numbers are quite acceptable for subsequent �nal bunch
compression till �b = 10 ns in a straight drift section, or in the ring.

4.3 Final compression

As we already mentioned, after precompression the bunch length can be decreased due to
relevant modulation of the ion energy and subsequent inertial compression, or due to �=2-
rotation in its longitudinal phase space. During this stage the space charge �elds of the
bunch are very strong, so that the Laslett tune shift of the compressed bunch subsequently
exceeds the threshold values speci�c for circular accelerators. The length of the base
required for the �nal compression depends on the amplitude of the energy modulation
of the precompressed bunch. For example, as we saw at the end of Subsection 4.2.1 the
desired �nal compression factor (X = 70) can be reached, if the beam passes about 3.6
km (three turns in the ring) after initial modulation of the ion energy along the bunch
�p=p = �1:4 %. Corresponding amplitude of the ion energy modulation (3.5 MeV/u)
is obtained if the bunch passes the RF-voltage about 205 MV. For technical reasons,
so high RF-voltage cannot be created in a single RF-station. Hence, multiple turns
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Figure 4.14: Same as in Fig.4.13, but for the bunch rms momentum spread.

become necessary to create required energy modulation in the bunch for its subsequent
compression. In practice and depending on the advances in the technology of RF-station
designs, the number of turns required to create desired energy modulation may range
from 100 (2 MV/turn) till, say, about 7 (30 MV/turn).

In this Section we inspect possibilities of the �nal bunch compression due to its �=2-
rotation in the longitudinal phase space. We note that in any case, the bunch is com-
pressed due to its mismatching with the longitudinal acceptance of the ring. If the lon-
gitudinal beam emittance does not increased dramatically, the momentum spread in the
beam after its acceleration till 125 MeV/u will be very low (approximately 3�10�6). We
also saw that except for cases, when the precompression starts from very low RF-voltages
and therefore takes unacceptable long time, the �rst stage of the precompression is ac-
companied by strong blowup of the bunch momentum spread. For this reason, we may
expect that, if we start the precompression using high enough initial RF-voltage, the en-
ergy modulation required for the �nal bunch compression can be created during the bunch
precompression period. So that a special precompression circle becomes not necessary.

4.3.1 Turn by turn mapping

Since the �nal compression may take several tens of turns in the synchrotron. In such a
case, more reliable results will give the calculations, when the turn by turn mapping is
used to simulate the synchrotron oscillations of ions. In addition, these simulations give
direct predictions concerning the stability of the synchrotron oscillations of ions during
the compression.

For the sake of simplicity we again assume that the longitudinal space charge forces
in the beam correspond to a parabolic linear density in the bunch. In this case, the one
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turn map is described by the formulae analogous to Eqs.(4.21) { (4.23)�
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In the case, when the bunch is compressed by several (nRF ) RF-stations, we assumed that
these stations are uniformly distributed along the closed orbit with an azimuthal period
�� = 2�=nRF . Then, a single cell was constructed in such a way that it starts and ends
at the middle of the arcs separated the RF-stations. The RF-station was described as a
single longitudinal kick with the transport matrix

MRF =

2
4 1 0

�ZeV �
A�pv

1

3
5 : (4.29)

The maps between the RF-kicks was constructed using the following matrixes

MO(�) =

"
cosh(��)

sinh(��)

�
� sinh(��) cosh(��)

#
; �2 =

3

2

Z2Nrp��R
2
0

A
3(v=c)2�3
: (4.30)

The path length (�) in this equations was varied to enable an assumption that the bunch
length is a constant within a single step. As is seen from Fig.4.15, results of the calcu-
lations of the bunch lengths using mappings are in a good agreement with the results of
analytic calculations using Eq.(4.18).

The possibility to decrease the steps of numerical integrations in the one turn map
enables more accurate accounting of the space charge e�ects especially in the cases, when
the bunch length varies rapidly. These data also show that the amplitude of RF-voltage of
150 kV is not suÆcient to reach the desired compression factor. Inspecting the dependence
of the (�rst) minimum bunch length (�bm) on the initial amplitude of the compressing RF-
voltage V0 we �nd [Fig.4.16 (a)] that for a single RF-station on the orbit the minimum
bunch length (�bm) decreases more or less regularly until V0 � 300 kV. For higher RF-
voltages this dependence indicates the oscillations with an increasing amplitude. For the
�rst time it becomes smaller than 10 ns, when RF-voltage exceeds V0 =900 kV [see in
Fig.4.16 (a)]. On the contrary, the number of the turn, when the minimum is reached
(the position of the minimum) indicates a smooth dependence on V0 [Fig.4.16 (b)].

Let us consider in more detail the case, when V0 =1.13 MV. In this region, the mini-
mum bunch length varies periodically between 45 ns and about 8 ns (see in Fig.4.17). The
period of these oscillations is about 15.7 kV. For the beam containing 1013 of U4+ ions the
widths of the regions, where the �nal bunch length is smaller than 10 ns, is approximately
3 kV. It means that this compression method can be sensitive to the beam loading, which
should be strongly suppressed. Comparing the data from Figs.4.17 and 4.18, we �nd out
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Figure 4.15: Dependence of the bunch length on the turn number for exponentially grow-
ing RF-amplitude. No space charge forces, W =125 MeV/u, V0 =3 kV, k = 10, �in = 600
m, Æin = 3� 10�6. Solid line { calculated using the turn by turn mapping, open circles {
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Figure 4.16: Dependence of the (�rst) minimum bunch length (a) and of the position
of this minimum (b) on the amplitude of RF-voltage. N = 1013 of U4+ ions, W =125
MeV/u, k = 10, �in = 600 m, Æin = 3� 10�6, one RF-station/turn, a drift space between
RF-stations is divided by 1200 steps.
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that the period of the oscillations in the minimum bunch length is almost independent
of the number of ions in the beam. Though, the beam with smaller number of ions can
be compressed a bit stronger. The width of the region, where the length of the bunch
containing 1012 of U4+ ions is shorter than 10 ns, is about 25% wider than that for the
bunch containing 1013 of U4+ ions (Figs.4.18).
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Figure 4.17: Fragment of Fig.4.16 (a) [full circles]. Open circles show the dependence of
the compressed beammomentum spread on the amplitude of RF-voltage. Same conditions
as in Fig.4.16.

The discussed variations of the minimum bunch length with V0 occur due to e�ect of
the space charge �elds on the bunch compression. As is seen from Fig.4.19, during the
turn, when the bunch length reaches its minimum value, the common e�ect of the RF-
system and of the space charge forces may result in the over focusing of the synchrotron
oscillations of ions. So that the bunch length reaches its minimum at the point which
di�ers from the end point of the cell. The value of the minimum bunch length in all
these points is approximately the same (Fig.4.19). No such phenomena occur during the
preceding turn (compare solid and dashed curves in Fig.4.20).

If V0 =1.131 MV, the �nal stage of the compression (the bunch length becomes shorter
than 1 ms) takes 10 turns (Fig.4.21, full circles). The bunch momentum spread to this
time reaches about �0.8 %. During the �nal compression the Laslett tune shift ranges
from ��L = 0:1 till ��L = 10 (see in Fig.4.21, open diamonds). According to these data
��L exceeds 0.3 during the last 5 turns before extraction and exceeds ��L = 1 during
the very last turn (the turn number 141).

During the compression time the RF-amplitude increases by the factor of 1.85 expo-
nentially varying from 1.131 MV till about 2.07 MV:

Vm = V0 exp
� m

230

�
; m = 0; 1; : : : 141 (4.31)
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Figure 4.18: Dependence of the minimum bunch length on V0. Full circles: 10
13 of U4+

ions, open circles: 1012 ions. Other parameters are the same as in Fig.4.16.
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Figure 4.19: Dependence of the bunch length on the distance along the closed orbit during
the 141-th turn. Same conditions as in Fig.4.16; the numbers near curves are the values
of V0 in kV.
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Figure 4.20: Dependence of the bunch length on the distance along the closed orbit during
the 141-th (solid lines) and during 140-th (dashed lines) turns of the compression. Same
conditions as in Fig.4.16; the numbers near curves are the values of V0 in kV.
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Figure 4.21: Dependence of the bunch length (full circles) and of the Laslett tune shift
(open diamonds) on the turn number. N = 1013 of U4+ ions, W =125 MeV/u, V0 =1.131
MV, k = 10, �in = 600 m, Æin = 3 � 10�6, one RF-station/turn, a drift space between
RF-stations is divided by 4800 steps.
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Without such variation the minimum value of the bunch length becomes less than 10 ns
for higher amplitudes V0 (see in Fig.4.22).
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Figure 4.22: Same as in Fig.4.16, but RF-voltage is constant during the bunch compres-
sion.

Generally, the minimum value of the bunch length after compression depends on the
initial value of the momentum spread in the bunch. As is seen from Fig.4.23, for the beam
containing 1013 of U4+ ions the di�erence in the minimum bunch length for the bunches
having Æin = 3 � 10�5 and having Æin = 3 � 10�6 can reach the factor of four, while the
maxima in these curves di�er only about 30%. This picture also shows that the period in
the oscillations of the compressed bunch length is almost independent of the initial value
of the momentum spread in the bunch.

These calculations show that, if the single bunch is obtained in the synchrotron without
strong blowup of the longitudinal emittance, e�ects of the bunch space charge �elds in
the high intensity mode (N = 1013) do not limit the possibility of the bunch compression
till the length of about 10 ns. Provided that the initial amplitude of RF-voltage linearly
varies along the bunch and is high enough, such a compression can be done as a one
step in the cycle and without additional energy modulations of the precompressed bunch.
However, more complete analysis including the transverse blowup of the compressed bunch
is necessary.

4.3.2 Separate energy modulation and bunch compression

During the bunch compression the bunch length decrease approximately 850 times. Cor-
respondingly, the local beam current increase by the same factor approaching the value
of 640 A. It means that, if such a bunch will interact with a system having the coupling
impedance of about 100 Ohm, it will induce there the voltage of about 64 kV. For example,
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Figure 4.23: Dependence of the minimum bunch length on V0. Same conditions as in
Fig.4.16, but crosses correspond to Æin = 3� 10�5, while circles to Æin = 3� 10�6.

such an impedance, or higher, may have the RF-system producing the sawtooth compress-
ing voltage. As we saw, even smaller RF-voltage distortions can a�ect substantially the
value of the bunch after compression. On the other hand and as is seen from Fig.4.24
(dashed curve), signi�cant variations of the bunch length start after the period, when the
bunch momentum spread increases substantially. This is a speci�c feature of the com-
pression due to �=2{rotation in the longitudinal phase space. Using this feature we can
avoid additional perturbations of the bunch longitudinal phase space due to undesirable
interactions with high impedance devices, if after increasing the bunch momentum spread
till necessary value, we move the bunch in the bypass which is free of the RF-systems
(the layout of such a synchrotron can look, for example, as is shown in Fig.4.25). The
vacuum chamber in this third bypass can be designed to have as low coupling impedance
as possible.

The bunch compression using energy modulation and �nal compression in the separate
bypasses was simulated switching o� the compressing RF-voltage in the simulation code
(Fig.4.26).

Relevant variations of the bunch momentum spread for the cases when the energy
modulation occurs during the �rst 100 and 50 turns are shown in Fig.4.24 (curves 2 and
3, respectively). The turn number, when the �nal compression occurs in these curves is
indicated by dips. According to these data, the bunch compression till the �nal length
of 10 ns can be done using initial RF-amplitude of 1.131 MV, if the bunch is moved to
RF free bypass after the �rst 100 turns. For this RF-voltage, the period of 100 turns
is necessary to reach the momentum spread in the bunch � 0:7 %. After this energy
modulation the bunch length of 10 ns is reached after passing of 45 turns in the RF-
free bypass (inertial compression). During this period the bunch length decreases (while
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Figure 4.24: Dependence of the bunch momentum spread (left axes) and of the bunch
length (right axes; V0 = 1:131 MV) on the turn number. Most conditions are same as in
Fig.4.16, but 1{ RF-voltage is on during all the compression period, V0 = 1:131 MV, 2{
same RF-voltage is on during �rst 100 turns; 3{ RF-voltage is on during �rst 50 turns,
V0 = 2:48 MV.
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Figure 4.25: Schematic layout of the synchrotron with the separated energy modulation
and �nal bunch compression.
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Figure 4.26: Dependence of the RF-voltage on time to simulate bunch compression in two
bypasses. Open circles { bunch compression in a single bypass; solid line { bypass switch
after 100 turns; dashed line { after 50 turns.
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conditions are same as in Fig.4.16. Open circles { continuous compression, V0 =1.131
MV; solid line same RF-voltage during �rst 100 turns; dashed line { energy modulation
during �rst 50 turns, V0 =2.48 MV.
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the local bunch current increases) by the factor 2.2. Smaller increase in the local bunch
current is possible (by the factor 1.4; Fig.4.27), if the energy modulation occurs during
the �rst 50 turns. However, the �nal bunch length will reach in this case 10 ns, if the
RF-amplitude is increased about twice (V0 = 2:48 MV). This energy modulation mode
can be reasonable, if an increase in RF-amplitude can be done with the same amount of
the RF-stations.
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Chapter 5

Optics of the Synchrotron Ring

The lattice of the synchrotron should enable all functions of the ring in the bunch com-
pression operation mode (U4+ ions within the energy range 10{125 MeV/u) as well as two
high energy modes providing the possibility to accelerate in the ring the ions of U12+ and
U92+ as it was mentioned in the Introduction.

In the bunch compression mode the ring will operate the beams with heavy space
charge conditions both at the injection energy (10 MeV/u) and at the extraction energy
during the �nal stage of the compression (energy 125 MeV/u). In order to suppress
the space charge instability the lattice focusing should be strong enough (to enable the
�nal compression as deep as possible). For the same reason, the symmetry of the lattice
should be as high as possible to reduce the amount of the lattice resonances and nonlinear
resonances due to space charge �elds of the beam. The lattice design should also avoid
strong modulations of the betatron functions of the ring. In line with these requirements,
the lattice should provide enough space for straight sections for injection and extraction
of the beam, for RF{stations, for various correctors and for the beam diagnostic tools.
It seems that a racetrack scheme with two arcs having very high super-symmetry and
connected by two straight sections with the optics matched to the arcs can �t all mentioned
requirements.

5.1 Arc lattice

For the arcs of the synchrotron the anti-symmetrical magnetic FODO structure was chosen
as a standard cell. The total number of cells in the arcs is 2�50, so that the bending
angle of the cell is �B = 62:83 mrad. The cell contains two zero-gradient dipoles with
the bending angle 31.415 mrad separated by equal spaces from focusing and defocusing
quadrupoles (Table 5.1). For the top guiding �eld B = 1:4 T and BR=100 Tm, the
bending radius of the closed orbit in a dipole is R = 71:43 m. The length of the cell is
10 m, so that the closed orbit perimeter in the arcs is 1 km. Remaining length of the
orbit can be divided between long straight sections. The betatron functions for this cell
(Fig.5.1) correspond to �av '16 m, so that no strong reduction of the lifetime due to
charge-changing IBS can be expected, when the ions move inside the arcs.

The betatron phase advance per cell is about 36Æ, which corresponds to about equal
vertical and horizontal betatron tunes of '10. The momentum compaction factor of the
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Table 5.1: Parameters of the arc cell. The length of the cell is 10 m, BR=100 Tm.

Item L [m] B [T] rB [T/m] �B [mrad] R [m]
Quad 0.804 8.63 0
Space 0.6 0
Dipole 2.245 1.4 31.415 71.43
Space 0.6 0
Quad 1.525 -9.22 0
Space 0.6 0
Dipole 2.245 1.4 31.415 71.43
Space 0.6 0
Quad 0.804 8.63 0
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Figure 5.1: Dependences of the betatron functions on the distance inside the arc cell. Full
circles { �y, open circles { �x, dashed line { dispersion function of the ring.
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ring is 0.00827, which corresponds to 
tr = 11. For the beam with an invariant emittance
of �0 = 20 mmmrad the maximum deviations of the envelope from the closed orbit at
injection energy 10 MeV/u are 5.5 cm (Fig.5.2; we remind the reader that the beam
emittance � = �0=[
(v=c)] is in this case 138 mmmrad). If the pipe radius exceeds this
value about twice, the vacuum chamber diameter should be about 20 cm.
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Figure 5.2: Dependences of the betatron envelopes on the distance inside the arc cell. The
envelopes were calculated for W = 10 MeV/u and for �0 =20 mmmrad (20-turn injection;
corresponding non-invariant emittance � ' �0=(v=c) is 138 mmmrad).

5.2 Long straight section lattice

The lattices of the long straight sections should �t the requirements which will enable
the operations of the beam injection/extraction system and of the RF-systems of the
synchrotron. The optics of these straight sections should be matched to that of the arc
cells. In the simplest case, those can be the lattices providing the I-type (or, [-I]-type)
transport matrixes for the low intensity beam. For example, such lattice for a single
straight section can be constructed using the cells similar to those in the arcs, but with
zero bending �elds and �=2 phase advance over a single cell (see in Table 5.1). Four of
such cells (of 40 m long) provide the I-type transformation over the straight section. The
betatron functions for a single �=2-cell are shown in Fig.5.3.

All these lattices and parameters of their elements should be considered as examples,
which can be speci�ed in more detail during the future design work.
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Table 5.2: Parameters of the long straight section cell. The length of the cell is 10 m,
BR=100 Tm.

Item L [m] rB [T/m]
Quad 0.8 7.4
Space 3.45
Quad 1.5 -8.6
Space 3.45
Quad 0.8 7.4
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Figure 5.3: Dependences of the betatron functions on the distance inside the cell in the
straight section. Full circles { �y, open circles { �x.
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5.3 Bypass switch

We consider here a possible variant of the switchyard, which enables the single turn
passing of the beam from the equilibrium orbit in the synchrotron to the bypass and
back. Furthermore, this scheme has two additional beam lines: the �rst - for injection
and acceleration of ions, the second - for energy modulation and initial compression of
the beam, and the third - for �nally bunch compression. In this report we suppose to
use two special insertions (named bypass insertion BI) which are placed in the opposite
long straight sections with the relative betatron phase advance close to some integer of
2�. Every one of the BI includes two switching insertions (SI). General schematic layout
of the bypass insertion is shown in the Fig. 5.4

Every switching insertion occupies two sells of the lattice (see in Fig.5.5). It includes
two full-aperture switching magnets RSM1 and RSM2, and a special two-aperture bending
magnet BM (see in Fig. 5.6). The bending magnets inside the bypasses (M) are the
standard arc bending magnet in their standard regime.

Every bypass insertion occupies in the straight section four cells of the lattice on
two roads and six one - on the third road. All elements are disposed in the horizontal
plain. The two-window bending magnet is designed to produce the magnetic �elds which
have the opposite direction in each of its windows. This provides the beam de
ection to
opposite directions in the horizontal plain according to a �eld direction in the RSM1 and
RSM2, and respectively, the beam position in the BM aperture. During acceleration the
magnetic �elds in the magnets BM, RSM1 and RSM2 vary similar to that in the bending
magnets of the arc dipoles.

The �eld directions in every part of BM aperture are �xed. On the contrary, RSM1
and RSM2 have identical �eld direction but last one must be changed, if we want to keep
the beam in the main ring or in the one of the bypass lines. To exchange the �eld direction
it is necessary to apply a high voltage to the switching magnets winding during the �eld
exchanging only. During another time the winding voltage depends on the winding active
resistance and �eld change velocity as in usual magnets. The switching magnets are
divided for some section in the longitudinal direction to reduce the winding voltage.

All elements aperture matches to the one of the regular part of the ring equal to 10 cm
(diameter). To �t this condition according with a horizontal envelop function behavior,
the aperture of the F-lens between RSM1 and RSM2 must be increased since 10 to 12.5
cm. Therefor the one of the D-lens downstream RSM2 must be increased to 14.5 cm. The
second insertion presents a mirror image of the one in the longitudinal direction. Main
parameters of the bypass insertion are shown in the Table 5.3.

5.4 Transverse dynamics during bunch compression

During the bunch compression the lattice should be tuned in a way which enables sup-
pressions of additional blowups of its longitudinal and transverse emittances. Just after
acceleration the beam passes to the RF-free bypass line (Compression and extraction orbit
in Fig.5.4) for the debunching into a single bunch. As we saw in Section 4.1, this period
takes about 20 ms. During debunching the Laslett tune shift of the beam decreases from
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Figure 5.4: General schematic layout of the bypass insertion: F, D - lenses, RSM -
switching magnets, BM - two-aperture bending magnets, M - bending magnet (standard
for arcs).
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Figure 5.5: Layout of the switching insertion to bypass.

Figure 5.6: Schematic (input) cross section of the two-aperture bending magnet (BM).
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Table 5.3: Parameters of the bypass insertion

Parameters Unit Value
Beam energy MeV/u 125
Magnetic rigidity Tm 100
Particle repetition period ms 8.511
switching time ms 0.85
Total horizontal orbit separation at the BM exit cm � 19.26
Output angle mrad � 62.83

switching magnets RSM1, RSM2

De
ection angle radian 0.005
Horizontal aperture cm 12
Vertical aperture cm 10
Total length m 3.0
Cell number 10
Cell length m 0.3
Magnetic �eld T 0.176
Current kA 13.33
switching voltage per cell kV 14

Two-aperture bending magnet BM
Horizontal aperture (single) cm 10
Vertical aperture cm 10
Length m 3.055
Magnetic �eld T 1.5
Bending angle mrad 45.83
Horizontal thickness of the middle conductor cm 4.0

Bending magnet M (standard for arcs)

Length m 2.245
Magnetic �eld T 1.4
Bending angle mrad 31.415
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about 0.04 till 0.02. These values are not very high. So that the betatron tunes may take
any convenient positions on the tune diagram.

After debunching, the long bunch is passed to the energy modulation line of the bypass
(see in Fig.5.4). During this period and depending on the value of the desired energy
modulation gain the bunch length can decrease by the factor of 2, or 1.4. Correspondingly,
the Laslett tune shift of the bunch will increase from 0.02 till about 0.04 (or, less for rapid
energy modulation). Provided that the working point in the tune diagram is placed
below the parametric resonance, this value of the tune shift also should not result in any
signi�cant blowup of the transverse bunch sizes.

Most signi�cant blowups of transverse bunch sizes can be expected during the last
turns of the compression, when the bunch becomes so short that the betatron tunes
approach from the above, or cross the parametric resonance (resonances). For this period,
the bunch passes again to the compression and extraction orbit line of the bypass (see in
Fig.5.4). Since the tune shift due to repulsion of ions is negative, to that time the working
point of the ring in the betatron tune diagram should be tuned as close as possible to the
parametric resonance from the below.

Transverse blowup of the compressed bunch was simulated using a simpli�ed code
taking into account the bunch compression as was described above and possible variations
of the horizontal and vertical beam envelopes due to space charge �elds. For the sake of
simplicity, we assumed D�Æ � �x, which holds well for our parameter sets. Then, the
single turn transport matrix was calculated solving step by step the following equations:

d2y

ds2
+

�
�rB
BR

� C1

�s�y(�x + �y)

�
y = 0; C1 =

3

2

Z2Nrp
A
3(v=c)2

; (5.1)

d2x

ds2
+

�
1

R2
+
rB
BR

� C1

�s�x(�x + �y)

�
x = 0; rB =

@By

@x

����
0

; (5.2)

z0 = R0�Æ; Æ0 = � ZeV

A�pv
zÆ (� � �RF ) +

3

2

Z2Ne2�R0

A
2pv�3s
z: (5.3)

As the �rst approximation, we solved these equations assuming that the bunch sizes [�x
�y and �s] are constant within the lattice cell unit 1. Correspondingly, the transport
matrixes for longitudinal motion were calculated as it was described in Subsection 4.3.1,
while the transport matrixes for transverse oscillations were obtained using the units:

�
y
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�
=

�
cos q� sin(q�)

q

�q sin(q�) cos q�

�
; q = R0
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�rB
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�
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�
y
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�
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�
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q
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�
; q = R0

s�
�rB
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� C1

�s�y(�x + �y)

�
;

1Next approximations can be obtained dividing the cell units by necessary amount of step. Preliminary
estimations of the calculation errors for the bunch length show that decreasing the step twice gives the
deviation in the bunch length about 0.1 %.
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Calculating the functions dx;y, cx;y, bx;y and ax;y similar to that described in Subsection
4.3.1, the transverse bunch sizes were calculated using the following equations

�2x(�) = ��x0d
2
x(�) +

R2
0�

�x0
b2x(�); Æ2x(�) =

��x0
R2

0

c2x(�) +
�

�x0
a2x(�); (5.4)

and

�2y(�) = ��y0d
2
y(�) +

R2
0�

�y0
b2y(�); Æ2y(�) =

��y0
R2

0

c2y(�) +
�

�y0
a2y(�): (5.5)

Here, (�x;y)0 are initial values of the horizontal and vertical �-functions at the point where
the bunch length is observed.

In these calculations we assumed the following lattice of the synchrotron: [10 o-cells,
50 a-cells, 10 o-cells, RF-station, 10 o-cells, 50 a-cells and 10 o-cells], where a-cell means
the lattice cell in the arc and o-cell means the lattice cell in the straight section. Smaller
transverse blowups occur, if the vertical and horizontal betatron tunes before compression
are shifted to the positions below the parametric resonance (�x;y . 0:5). Relevant param-
eters of the cell items are listed in the Tables 5.1 and 5.2. In this lattice, the betatron
tunes of the low intensity bunch are �y = 0:4512 and �x = 0:4831 correspondingly.

With this lattice and during the bunch compression, the transverse bunch sizes are
almost constant until the bunch length reaches its minimum and then, blowups dramati-
cally (Fig.5.7). More close inspection of the time dependences of the bunch sizes during
the last 10 turns before the compression event (Fig.5.8) show that the transverse bunch
sizes increase after the turn when the bunch length passes its minimum value (9.8 ns, turn
number is 129).

At the extraction turn and at the extraction point (the turn number 129) the vertical
rms beam size is �y = 8 mm, while the horizontal is �x ' 4 mm. As is seen from
Fig.5.9 (top graph), for this tuning of the lattice increases in transverse bunch sizes
start during the next turn. So that this lattice tuning does not limit the possibility
of the bunch compression till the length of 10 ns. During the bunch compression and
before the bunch length reaches its minimum value the tunes decrease from their initial
values down to �x;y = 0 crossing subsequently the parametric resonances �x;y = �0:5 and
approaching to �x;y = �1. As is seen from Fig.5.9 (top and bottom graphs), crossing
the point �x;y = 0 does not a�ect the bunch size. A weak instability of the horizontal
betatron oscillations appear when the working point crosses the resonance �x;y = �0:5 and
the vertical oscillations become unstable, when the working point crosses the resonance
�x;y = �1. However, the last instability occurs the next turn after extraction (Fig.5.9).
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Figure 5.9: Dependences of the transverse bunch sizes (top graph), of the betatron growth
rates (middle) and of the betatron tunes (bottom) on the turn number. The parameters
same as in Fig.5.7; open circle { vertical and � { horizontal oscillations.
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More detailed study shows that the transverse bunch sizes at the extraction point
are very sensitive to the tuning of the ring lattice. As is seen from Fig.5.10, substantial
variations in the transverse bunch sizes may occur, when e.g. the strengths of the focus-
ing quadrupoles in (all) arc cells change within 5�10�5. Similar sensitivity indicate the
transverse bunch sizes to the strength of the quadrupoles in o-cells. The reason is that
in most cases during the �nal bunch compression betatron oscillations of particles lose
their stability. So that the lattice tuning during the bunch compression mode will be not
easy. In particular, that may demand the beam extraction during the turn of the �nal
compression event and transporting of the bunch to the target in a special beam line.
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Figure 5.10: Dependences of the transverse bunch sizes on the �eld gradient (@By=@x) in
the arc cells. The parameters same as in Fig.5.7; open circle { vertical and � { horizontal
bunch sizes.

5.5 Final focus

The compressed bunch is transported to the target through the �nal focus system. That
was simulated as an inverse problem. We assumed that at the target the bunch must
make a spot of the round cross section with the radius d = 0:1 cm and that the target
is placed at the minimum of the beam transport line �{function. In these simulations
we also assumed that the �nal values of the horizontal and vertical bunch emittances
are equal and correspond to the value of the invariant emittance (�0 = 
(v=c)�) of 10
mmmrad. The bunch transport was simulated using the numerical solution of the bunch
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envelope equations:

d2x

ds2
+ kx(s)x =

1

x3
+

Cp
x(x + y)

;

(5.6)

d2y

ds2
+ ky(s)y =

1

y3
+

Cp
x(x + y)

:

Here, x and y are the horizontal and vertical bunch envelopes expressed in units of the
bunch rms radius on the target

x =

p
�x�

d
; y =

p
�y�

d
: (5.7)

kx;y(s) are the focusing rigidity coeÆcients. The coeÆcient C in Eqs.(5.6) describes the
strength of the bunch space charge. In our de�nitions it reads

C =

�
Z2

A

�
Nrpd

2


�20�s
:

If the bunch duration is 10 ns, �s = 142:3 cm. Only the simplest triplet focusing segment
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Figure 5.11: The bunch (vertical and horizontal) envelopes (left) and the segment chro-
maticity distribution (right) from the target through the �rst triplet. The vertical axes
on the left graph starts from 1 mm.

was simulated. The goal for these simulations was to �nd the parameters of the �nal
focus triplet, which can provide close and not too large values of the bunch radius at the
entrance of the �nal focusing triplet. An example of the variation of the beam envelope
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Table 5.4: Parameters of the �nal focus triplet.

Name Length, m Gradient, T/m
Drift 0.1 0
F 1 200
D 1 170
F 1 100

Table 5.5: Parameters of the bump magnets for the multiturn injection.

Parameter Value Parameter Value
Number 2 Pulse shape Half-sine
Aperture (2X�2Y) cm�cm 10� 8 Pulse duration ms 3.3
Length cm 50 Current kA < 1.6
Wind number 50 Voltage kV < 2
Maximum �eld kGs <5

for 1013 U4+ ions with the energy 125 MeV/u, compressed in the 10 ns bunch, is shown
in Fig. 5.11. Parameters of the �nal focus triplet are given in the Table 5.4

The apertures of the quadrupoles should exceed 2�?. According to data shown in
Fig.5.11 is about �9 cm in the defocusing quadrupole. This estimation shows that the
�nal focus quadrupoles should be the superconducting or pulsed ironless lenses. The �nal
focus system should match the foregoing �nal compression system lattice.

5.6 Multiturn injection

The multiturn injection scheme of U4+ ions at the energy of 10 MeV/u can be done
similar to that described in Ref.[14]. The injection occurs in the horizontal plain moving
the equilibrium orbit away from a septum magnet using two bump-magnets. During
injection the equilibrium orbit displacement decays approximately linearly from an initial
value to zero. The septum-magnet is placed before the F-lens entrance. The horizontal
beta-function value at the bump-magnet azimuth is equal to 16 m. The beam size (sigma)
at this place is approximately equal to 1 cm. The distance between the septum-magnet
and the bump magnets corresponds to the phase advance of the betatron oscillations equal
to �. Following Ref.[14], we assume the �lling factor in the beam betatron phase space
approximately equal to 0.3. Taking the vacuum chamber diameter 10 cm, we �nd that 20
turns could be injected using the bump magnets with parameters listed in the Table 5.5
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Chapter 6

RF Systems

Complete R&D study for the RF system of the bunch compression synchrotron is de-
scribed in Ref.[9]. We shall discuss here only the parts which can be necessary to evaluate
relevant limitations on the beam performance, or which are necessary to give the reader
better understanding of the synchrotron structure. RF systems of the synchrotron con-
sists of two parts. One is the accelerating system. It is necessary to accelerate the ion
beam from the injection energy 10 MeV/u till the �nal energy 125 MeV/u. This part
mainly consists of the Rf cavities loaded with ferrite. The second accelerating system
provides the energy modulation which is necessary for the bunch compression. For this
purpose the induction type accelerating devices will be employed.

6.1 Accelerating RF system

The accelerating RF system of the synchrotron consists of 250 identical ferrite loaded RF
cavities placed in the 'Injection orbit' line of the bypass (Fig.5.4). The ferrite loaded part
of the cavity is separated from its high-vacuum part by the ceramic window (Fig.6.1).
During acceleration cycle the working frequency of accelerating RF system should vary
from fin =36 MHz to ff=117MHz. Relevant variation of the frequency of the fundamental
mode of the cavity occurs using the biasing solenoidal magnetic �eld (Fig.6.1). As was
shown by the measurement described in Ref.[9], for this frequency range the RF cavities
can be loaded using the ferrite of the type 60HH. Designed cavities enable the accelerating
rate of 36 kV/m and, correspondingly, the acceleration time of 0.2 s. The cavity is cooled
by water which 
ows in the gaps shown in Fig.6.1. Present cavity design foresees for
possibility to bake out the part of vacuum chamber inside the cavity as it is described in
Ref.[9].

6.1.1 RF cavity for acceleration system

The magnetic system of the cavity consists of the solenoid and of the yoke. The solenoid
creates in the cavity ferrite a periodic magnetic �eld with the repetition frequency of 0.5
Hz . During the acceleration cycle (�t = 0.2 s), the amplitude of this �eld increases from
1790 to 5870 Gauss. The biasing magnetic �elds of adjacent cavities can be set to have
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Figure 6.1: Sketch of the acceleration system RF-cavity with RF electrical �eld lines and
outside dimensions.

opposite directions, so that the in
uence of the magnetic �eld on the ion trajectories can
be reduced.

The ceramic window consists of two parts. Between them a metal (copper) electrode
is soldered. The electrode is a part of RF capacitance of the cavity and closes ceramic
window from the beam vacuum channel. An RF power feeding of the cavity is made
through conducting link to this electrode. Side and cylindrical walls of the cavity body
are manufactured from 1 mm sheet of stainless steel. The cavity body is supported by
the magnetic system frame.

6.1.2 RF characteristics of the accelerating mode

The properties of the fundamental mode of the cavity were calculated using the program
CLANS (see e.g. in Ref.[9]). These calculations used the RF properties of ceramics,
cooling water and cavity metals which are listed in Table 6.1 The required for these
calculations ferrite properties were measured using RF setup described in Ref.[9]. RF
characteristics of the accelerating cavity mode were calculated for �ve RF frequencies and
for 12 kV of RF voltage. RF characteristics of the accelerating cavity mode and properties
of ferrite at these frequencies are shown in Table 6.2. The complete length of one cavity
with additional units is ' 0.4 m so that the total length of the accelerating RF system is
100 m.

The calculations showed that the maximum rf magnetic �eld (Bmax) di�ers from its
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Table 6.1: The RF property of cavity materials at accelerating frequencies.

Copper resistivity at 60oC, �Ohm�cm 1.89
Stainless steel resistivity, �Ohm�cm 73.7
Permeability �0 for the ferrite 11
Ceramic permittivity 12
Dielectric losses in ceramic, tan(Æ) 0.001
Permittivity for water 81
Dielectric losses in water, tan(Æ) 0.01

Table 6.2: RF properties of the accelerating cavity mode and ferrite properties in accel-
erating frequency range.

External magnetic �eld , Gs 1796 2105 2547 3354 5865
Resonance frequency, MHz 35.87 48.002 64.2 85.37 112.8
Quality factor [Q] 88.1 129 192 293 436
Shunt impedance [Z0], kOhm 7.59 8.36 9.38 10.9 12.6
Total power, kW 9.48 8.61 7.68 6.59 5.71
Speci�c ferrite losses, W/cm3 1.57 1.19 1.01 0.81 0.72
Ferrite magnetic permeability 23.82 13.2 7.33 4.07 2.26
Tangent of magnetic losses, tan(Æ) .0104 .0068 .0036 .0025 .0014
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minimum value (Bmin) not more than by a factor of 20%. It is taken into account, that
tan(Æ) is constant for all ferrite volume and corresponds to an average value of a �eld
Bav = (Bmax +Bmin)=2.

6.1.3 Higher order modes

Higher order modes (HOM) of the designed cavities were calculated using the program
CLANS as it is described in Ref.[9]. The diameter of the vacuum chamber in the beam-line
containing the accelerating RF-system is 200 mm. The corresponding critical frequency
(namely, for the TM01 mode) for a circular waveguide of such a diameter is 1080 MHz.
The results of calculations show substantial variations in the HOM-spectra (see in Fig.6.2)
during ion acceleration. The cavity impedance Z(f) calculated by the code CLANS was
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Figure 6.2: HOM spectrum of the cavity at initial (W=10 MeV/u) and at the �nal
(W=125 MeV/u) ion energies.

�tted to that described by the following equation

Z(f) =
nX
k=1

Z0k

1 + iQk

�
f

fk
� fk
f

�

where Z0i, Qi, fi are correspondingly the shunt resistance, quality-factor and the resonance
frequency of the i-th mode. For the �rst modes these values are listed in the Table 6.3.
The strength of the interaction of coherent oscillations of the beam with surrounding
electrodes is speci�ed by speci�c coupling impedance, which is

Z(f)

n
=
f0
f
Z(f):
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Table 6.3: Characteristics of the HOM at (W=10 MeV/u; left part) and at (W=125
MeV/u; right part).

k fk, MHz Z0, Ohm Q
1 113.2 77 52
2 121 3 13
3 166 0.3 6
4 205.3 1.36 8
5 260 0.04 8
6 304 0,07 8
7

fk, MHz Z0, Ohm Q
180 0.15 1.9
366.6 76.3 80
394.6 4.28 160
582.5 0.28 40
669 10.33 90
855 0.2 65
958.2 1.87 90

As is seen from Figs.6.3 and 6.4, for each of designed accelerating cavities these values are
negligible small as compared to the coupling impedance of the ideally conductive vacuum
chamber of the synchrotron ((Z=n)0 ' 170 Ohm)�

Z

n

�
0

=
30


2(v=c)

�
2 ln

�
l?
a

�
+ 1

�
' 170 [Ohm]; W = 125[MeV=u]:

Here, l? is the radius of the vacuum chamber and a is the beam radius.
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Figure 6.3: HOM spectrum of the cavity in terms of Z=n. Ion energy 10 MeV/u, 250
cavities.
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Figure 6.4: HOM spectrum of the cavity in terms of Z=n. Ion energy 125 MeV/u, 250
cavities.

6.2 Sawtooth RF-voltage device

In this Section we estimate a possibility of the generation of the sawtooth-shape RF-
voltage which is necessary for the bunch compression. As we already discussed, this
acceleration structure will be installed in one of the beam line of the RF containing
bypass. Generally, the sawtooth voltage device can be designed using the ferrite loaded
cavities with frequencies equal to several �rst harmonics of the revolution frequency at
the compressed energy of the synchrotron. An example of the RF system using the �rst
�ve harmonics is described in Ref.[9]. One of the strong disadvantages of such a device is
that increasing of the useful slope of the RF voltage till, say, 90 % demands a substantial
increase in the number of the required harmonics. In this Section we discuss the possibility
when the energy modulation system can be designed quite similarly to those which are
used in the induction accelerators (see e.g. in Ref.[15]). As is shown on Fig.6.5, such a
structure consists of necessary amount of some identical sections .

Each cell of a unit contains the toroid magnetic core located around the equilibrium
orbit. The neighbor sections are separated one from another by the gap with a ceramic
tube, which is used as the vacuum seal assembly and as the high voltage insulator. Prop-
erly, this is quite the accelerating gap. One of a permalloy composition could be used as a
magnetic material for the cores. Such kind of the cores were already utilized in induction
accelerators [15] with rectangular pulses of the duration about 0.5 �s. In this case, the
thickness of the permalloy �lm was of 10{20 �m. Using an extrapolation of these results
to our parameter region, we arrive at the parameter set given in the Table 6.4.

Figure 5.35 shows one period of the speci�c sawtooth RF-voltage per one meter of
the magnetic cores length and the inductance time diagram in the permalloy during one
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Figure 6.5: Schematic layout of the induction-type RF-structure generating the sawtooth
bunch compression voltage.

Table 6.4: Parameter list of the sawtooth voltage device.

Parameter Unit Value
Beam energy MeV/u 125
Revolution period �s 8.511
Ratio of saw back laps to period 0,1
Core inner diameter cm 15
Core radial thickness cm 10
Induction change-over during period in permalloy T �1.0
Speci�c longitudinal gradient of accelerating voltage keV/m �80
Speci�c longitudinal gradient on the ceramic tube keV/cm <10
Core magnetizing peak current kA < 0.5
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Figure 6.6: The shape of one period of the speci�c sawtooth RF-voltage per one meter of
the magnetic cores length (solid line) and the inductance time diagram in the permalloy
during one RF-period (dashed line).

Every section is feed throw some inputs. The sawtooth shape of the RF-voltage is
formed using the sawtooth shape of the feeding voltage, which is supplied using coaxial
cables.

The single section length could be chosen to �t the desired magnitude of the power
supply voltage. As we saw in Subsection 4.3.2, the required energy modulation is reached,
if the beam passes the sawtooth RF-voltage of �2.48 MV per turn during 50 turns. This
energy gain can be provided, if the sawtooth energy modulation device occupies 30 m
of the free space in the energy modulation line of the bypass insertion. If every straight
section lattice cell contains two free spaces of about 3.5 m length (total length per cell is
7 m ), 6 cells could be enough to install the accelerating structure for the required beam
energy modulation.

The deviations from the linear dependence of the compression voltage on the syn-
chrotron phase should be smaller than 0.1 %. This poses the requirement for both a
nonlinearity of the feeding voltage itself and for e�ects due to RF-�elds, which the bunch
induces in the unit. The beam debunching before energy modulation will suppress the
high frequency beam loadings. As we saw, during this period an increase in the local
bunch current is given by the factor between 1.4 and about 2. Since the average reactive
part of the coupling impedance of the vacuum chamber with the perfectly conducting
walls [(Z=n)] is about 200 Ohm, the total impedance of the sawtooth voltage unit should
not exceed this value. For same reasons, an increasing of the inductive part of the cou-
pling impedance of the unit can be very desirable. Particularly, these problems should be
addressed to more detailed engineering designing of this tool (see also in Ref.[9]).
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Chapter 7

Coherent Instabilities

In this Chapter we discuss the limitations on the beam intensity which occur due to
their collective �elds. That can be the �elds due to the beam space charge, or the wake
�elds induced by the beam in the surrounding electrodes. In the last cases we call the
instabilities as the conventional ones.

7.1 Collective space charge instabilities during injec-

tion

During the multiturn injection the Coulomb interactions of injected bunches can result
in instabilities of their dipole betatron coherent oscillations during the periods preceding
to their debunching in the betatron phase space. Some properties of these instabilities
are very similar to that due to beam-beam interaction in the colliders. In particular,
due to conservative nature of the space charge forces those are the resonant instabilities,
which occur when the betatron tunes approach the resonant values. The typical values of
the oscillation increments divided by the ion revolution frequency are determined by the
value of the Laslett tune shift. Like the beam-beam collective instabilities the instabilities
in the multiply-injected bunches cannot be suppressed by the Landau damping due to
nonlinearities of the space charge �elds (see e.g. in Ref.[8]). On the other side, since
the bunches in the beam are never separated, the feedback systems suppressing such
instabilities should a�ect the relative motion of the bunches. Due to complexity of the
subject we consider here only two simpli�ed model cases, which may have a heuristic
worth for the future studies.

7.1.1 Interaction of a new deposit with the stored beam

Just after injection of a new ion deposit in the bunch and prior to its debunching the
beam consists of two independent parts each having the dipole momenta d1 and d2. Due
to space charge forces and in the smoothed focusing approximation the dipole coherent
oscillations of these beams obey the following equations
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d001 + �2b d1 = 2�b��1[d1 � d2]; (7.1)

d002 + �2b d2 = �2�b��2[d1 � d2]: (7.2)

Here,

��1 =
Z2

A

N2rp
2�
2(v=c)�2B

; ��2 =
Z2

A

N1rp
2�
2(v=c)�1B

; (7.3)

or, if we take N2=�2 = N1=�1 = N=�,

��1 = ��2 = ��L =
Z2

A

Nrp
2�
2(v=c)�B

;

d001 + �2b d1 = 2�b��L[d1 � d2]

d002 + �2b d2 = �2�b��L[d1 � d2]

These equations describe free oscillations of the center of gravity (X = d1 + d2; so-called
o-mode) of the beam and the following oscillations for the relative distance between the
beams (b = d1 � d2; so-called �-mode)

b00 + �2b b = 4�b��Lb: (7.4)

The last oscillations will be stable, if

�b � 2��L:

In the strong focusing machine we have to take into account the modulations of the
Coulomb tune shift along the closed orbit

(��L)x;y =
Z2

A

Nrp
2�
2(v=c)�B

s
�x;y

�x + �y
:

In a FODO-type lattice the combination �x + �y varies very weakly along the closed
orbit, so that the modulations of (��L)x;y mainly occur due to variations of the functionsp
�x;y(�). Assuming for the sake of simplicity

�(�) = �av +�� cos(nc�);

where nc is the number of the cells (or, the number of the superperiods) in the ring, and
�� � �av, we write

p
� '

p
�av

�
1 +

��

2�av
cos(nc�)

�
: (7.5)

Then, Eq.(7.4) reads
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b00 + �2b = 2�b��L
��

�av
cos(nc�)b: (7.6)

Here,

�2 = �2b + 4�b��L: (7.7)

Solutions of Eq.(7.7) describe unstable oscillations when the tune � approaches to a half-
integer

� =
nck

2
; k = 1; 2; : : : ; (7.8)

where the coherent tune shifts can be estimated using (see e.g. in Ref.[8])

��k =
1

2

s
"2 �

�
��L

��

�av

�2
: (7.9)

Here,

" =
nck

2
� �b +��L

is the detuning from the resonance. Correspondingly, the oscillations become unstable
within the band

nck

2
+ ��L ���L

��

�av
< �b <

nck

2
+ ��L +��L

��

�av
; (7.10)

where the oscillation increments (Æk =Im(��k)) vary according to

Æk =
1

2

s�
��L

��

�av

�2
� "2: (7.11)

We may expect that this instability will be suppressed by the Landau damping due to
nonlinear dependencies of the space charge forces on the particle betatron o�sets. Relevant
(dimensionless) decrement of the Landau damping can be estimated as 0.2��L. That
yields the following stability condition�

��L
��

�av

�2
� "2 < 0:16 (��L)

2 ;

or

j"j > ��L

s
��2

�2av
� 0:16;

��

�av
> 0:4: (7.12)

In a real case, the ratio ��=�av is not small (��=�av ' 0:5). Substituting this number
in the condition in Eq.(7.12) we �nd that during injection the working point of the ring
should not approach the parametric resonance from the above closer than 1.3���L and
should not exceed it larger than 0.7���L. We note, that conventional (dipole) feedback
systems cannot be used e�ectively to suppress this instability.
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7.1.2 Frequent deposits

Another instability due to Coulomb interactions of injected bunches may occur when new
bunches are injected so frequently that their debunching in the betatron phase space dur-
ing injection is small. For the sake of simplicity we assume that injected bunches are
packed so dense that their coherent oscillations can be described in the linear approxima-
tion in jdk=�?j, where k = 1; 2; : : : nb, nb is the number of injected bunches in the same
RF-bucket, �? are transverse radii of injected bunches. Then, coherent oscillations of the
beam are described by the following system of equations:

d00k + �2b dk = 2�b��(�)

nbX
m=1

(dk � dm): (7.13)

Assuming equal vertical and horizontal invariant emittances in injected bunches (�x =
�y = �), we write

��(�) = ��L

s
�(�)

�av
; ��L =

Z2

A

Nbrp
2�
2(v=c)�B

; (7.14)

and correspondingly,

d00k +
�
�2b � 2�bnb��(�)

�
dk = �2�b��(�)X(�); X(�) =

nbX
m=1

dm: (7.15)

Since the center of gravity of the beam X obeys a homogeneous equation

X 00 + �2bX = 0;

solutions to Eq.(7.14) will describe the stable oscillations unless the betatron tune ap-
proaches parametric resonances 1

�b =
nck

2
; k = 1; 2; : : :

However, in contrast to the case, discussed in the previous Subsection, both the tune
shifts of the dipole oscillations and the widths of these resonances in the tune diagram is
now nb times larger provided that the ratio Nb=� is constant. For example, the condition
in Eq.(7.10) will read now as

nck

2
+ nb��L

�
1� ��

�av

�
< �b <

nck

2
+ nb��L

�
1 +

��

�av

�
; (7.16)

1For example, we can de�ne nb � 1 variables

bk = dk � d1;

which obey the following homogeneous equations

b00k +
�
�2b � 2�bnb��(�)

�
bk = 0:

Solutions to these equations are unstable only near parametric resonances.
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while for the oscillation increments we obtain

Æk =
1

2

s�
nb��L

��

�av

�2
� "2: (7.17)

In order to avoid severe limitations on the injected bunch density in the phase space
(Nb=�) the number of the superperiods in the ring should be large. Since only about
20% of the tune shift due to space charge �elds contributes to the Landau damping, this
instability very unlikely will be suppressed by nonlinearities of the space charge forces.
The problem of the suppression of this instability demands a separate study.

7.2 Conventional coherent instabilities

A big value of the Laslett tune shift which is required to assure the possibility of the �nal
focusing in a spot with the desired diameter (1 mm for Nt =10

13 of U4+ ions) practically
eliminates possibilities of any long term operations with the beam at the injection energy.
On the other hand and for non-relativistic particles, for given values of the beam current
and of the impedance of the surrounding electrodes the growth-rates of known coherent
instabilities vary proportional to 1=(v=c)3. So that an acceleration of the injected beam
also reduces the limitations on its current due to interactions with surrounding electrodes
in the vacuum chamber. For these reasons, below we assume that just after injection
the beam in the synchrotron is quickly accelerated. The operation experience from other
similar machines (for example, the synchrotron U-70 in Serpukhov, or FNAL buster) show
that fast acceleration signi�cantly suppresses the high current limitations on the beam
performance.

In this Section we evaluate conventional coherent e�ects due to the interaction of the
beam with surrounding electrodes. That can be either the accelerating cavity or other
devices which can be necessary for various technical purposes (beam diagnostics, possible
charge cleaning electrodes etc.). We describe such devices using the model impedance
of a cavity with a unit Q-value (see e.g. in Ref. [1]). Due to low particle energies the
longitudinal collective e�ect will be strongly a�ected by the Coulomb interaction of the
beam with a smooth and perfectly conducting vacuum chamber surrounding it. This
interaction gives a capacitive contribution to the pipe impedance. For the synchrotron
operating below its transition energy, this may pose additional limitations on the resistive
part of the coupling impedance. However, for the same reason the threshold currents (of
coasting beams) in such synchrotrons can substantially exceed the values, corresponding
to the thresholds calculated using the so-called Keil-Schnell criterion (see e.g. in Ref.[8]).

7.2.1 Transverse instabilities during acceleration

If for some reason we ignore the e�ect of Landau damping on the transverse oscillations of
the beam, without ion acceleration the amplitudes of these oscillations (ac) exponentially
increase in time

ac(t) = ac0 exp(t=�): (7.18)
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With given number of particles in the bunch (beam) and provided that the instability oc-
curs due to interaction of the beam with surrounding electrodes due to �elds independent
on the particle energy, the instability growth-rate (1=�) depends on the particle energy
according to 2

1

�(p)
=
Q

p
; (7.19)

where p is the ion momentum. The factor Q in this equation is determined by the number
of particles in the beam, by the beam �lling pattern, by the geometry of surrounding
electrodes but it does not depend on the particle energy. The growth of the amplitudes of
transverse coherent oscillations in the accelerated beam can be evaluated using equation
similar to Eq.(7.18)

ac(t) = ac0 exp

�
Q

Z t

0

dt0

p(t0)

�
: (7.20)

Assuming, for example,

p(t) = pin + _pt; _p =
pf � pin
�t

; (7.21)

where �t is the acceleration time, we obtain

ac(�t) = ac0 exp

�
�t

�f

ln(pf=pin)

1� (pin=pf)

�
: (7.22)

Here,

1

�f
=
Q

pf
(7.23)

is the instability growth-rate of the accelerated bunches. These equations show that e�ects
of the small energy intervals on the amplitude of coherent oscillations of the accelerated
beam is described by the factor

� =
1� (pin=pf)

ln(pf=pin)
; �(�t) = �f�: (7.24)

For parameters of the discussed synchrotron the factor � has close values for both injec-
tion energies (� ' 1=2). So that the total growth of the oscillation amplitudes during
beam acceleration can be estimated as a half of the growth-time at the �nal energy of
acceleration

�(�t) ' �f
2
: (7.25)

2We do not discuss here the so-called resonant instabilities (see, for example, in Ref.[8]) which should
be avoided both in the single- and multibunch operation modes anyway.
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7.2.2 Transverse multibunch instabilities

After injection and prior debunching the beam consists of h = 994 bunches. If the
closed orbit perimeter is � =1200 m, then the bunch-to-bunch distance in the beam
is 1.3 m. It means that elements of the vacuum chamber, which remember induced
�elds during the time intervals in the region of 10{30 ns, will provide the coupling of
the coherent oscillations of the bunches in the beam. The interactions of the beam with
such surrounding electrodes, generally, produce numerous multibunch instabilities of both
longitudinal and transverse coherent oscillations of the beam. The total number of the
multibunch modes is equal to number of the bunches in the beam. Although the beam
in the synchrotron is assumed to have the bunch �lling pattern with a 10% gap, for
simplicity we shall calculate increments and stability criteria assuming the uniform �lling
pattern of the beam. The short gap in the beam will only slightly modify the increments
of unstable modes. For the beam with a uniform �lling pattern and containing short
bunches (�s ! 0) the values of the dipole transverse coherent frequency shifts can be
calculated using

(�!m;q)mb = �Z
2

A

Ne2my

2p�y

1X
k=0

exp

�
2�ik

my�y + q

h

�
Z?(kTb): (7.26)

Here, Tb = T0=h is the period of bunches in the beam, T0 is the ion revolution period in
the synchrotron, NZe is the bunch charge, my = �1, q = 0; 1; : : : ; h�1 is the multibunch
mode number and

Z?(t) =

Z 1

�1

d!

2�
Z?(!)e�i!t (7.27)

is the transverse coupling impedance in the time domain. According to these equations the
increments of the multibunch modes ([1=� ] =Im(�!m;q)mb) depend on the total number
of bunches in the beam only in the case where the wakes last longer that the revolution
period in the ring.

As an example, we estimate the growth-rates of the resistive wall transverse multibunch
instability. Using results from Ref. [7], we obtain

1

�q
=
Z2

A

�Ne2�av
3pl3?

r
fRF
�w

1X
a=1

mp
a
sin

�
2�a

h
[m�y + q]

�
: (7.28)

Here, 1=�w is the surface resistivity of the pipe material, �av is the average value of the
�{function. As is seen from Fig.7.1, even for the high intensity mode (N = 6:5 � 109

particles per bunch) the oscillation growth-times exceed 1000 s for the accelerated beam
(W = 125 MeV/u).

In this case, the contributions of small energies during acceleration in the growth-time
of the accelerated beam is described by the factor

� =
1 +

p
pin=pf
2

' 0:72:

Another typical limitation on the beam intensity due to unstable betatron multibunch
modes can be described in terms of the interaction of the beam with a Q=1 parasitic
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Figure 7.1: Dependences of the resistive wall instability growth-rate on the mode number.
Number of bunches 994, N = 6:5� 109, W = 125 MeV/u, �w = 5:8� 1017 1/s [copper],
�av =15 m.

cavity. In this case, the transverse coupling impedance is described by the following
equations

Z?(!) =
v

l2?

Zw(!)

i!
; Zw(!) =

Z0

1 + i
�
!r
!
� !

!r

� ; (7.29)

where Z0 is the shunt impedance of the parasitic cavity, !r is its resonant frequency, l?
is the radius of the vacuum chamber. For this case, Z?(t) reads

Z?(t) = �vZ0

l2?
exp

�
�!rt

2

�
sin

 
!kt
p
3

2

!
;

and hence,

�m;q = �0

1X
k=0

exp

�
2�ik

my�y + q

h
� ��rk

h

�
sin

 
��rk

p
3

h

!
; (7.30)

where �m;q = �!m;q=!0 and

�0 = my
Z2

A

Ne2!0Z0

2�pv

�av�

l2?
p
3
; �r =

!r
!0
: (7.31)

The typical value of !r for a single parasitic cavity can be estimated using !r ' �c=b,
where b is the radius of the distortion in the vacuum chamber. Then, the value �r=h is
estimated using
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�r
h
=

�RF
2b(v=c)

' �RF
2l?(v=c)

:

For the injection energy W =10 MeV/u, h = 994, l? = 10 cm and Nt = 1013 ions we
have �r=h ' 41:6 and �0 = �2:7 � 10�5 [1/s]. In this case, no important multibunch
instabilities occur.

As is seen from Eq.(7.30), the discussed instability becomes stronger for low resonant
frequencies, when �r � h so that the interaction couples the oscillations of many bunches
in the beam. So low frequencies of the parasitic modes may occur, if several parasitic
cavities have close frequencies and are coupled electro-magnetically.

In any case, in the safe region of parameters either the instability growth-time should
exceed the cycle period, or the values of ��

m in Eq.(7.30) should be inside the stability
diagram which occur due to Landau damping associated with the nonlinearity of the
guiding magnetic �eld of the ring and with the nonlinearity of the transverse space charge
forces of the beam. If I is the action variable of the horizontal (or of the vertical) betatron
oscillations, �!3 = aI is the betatron frequency spread due to cubic nonlinearity of the
guiding magnetic �eld of the ring and if �
(I) is the frequency shift of the betatron
oscillations due to the beam space charge �elds, the dispersion equation for the dipole
betatron oscillations in the space charge dominated beam reads (see, for example, in
Appendix D.1)

�!1 = 
1 + a
Q2(�!1; I)

Q1(�!1; I)
: (7.32)

Here, �!1 = ! � !y is the deviation of the mode frequency ! from the frequency of the
(vertical) betatron oscillations !y, 
1 is the coherent frequency shift of the monochromatic
beam, I = pJy=2 is the action variable of the betatron oscillations,

Qn(�!1; I) =

Z 1

0

dI
In@f0=@I

[�!1 � aI + 
(I)]
; n = 1; 2: (7.33)

Due to repulsion of ions the frequency shift due to space charge �elds is negative. Without
external octupole �elds on the closed orbit (a = 0) the space charge forces do not a�ect
the spectrum of the dipole oscillations of the beam

�!1 = 
1: (7.34)

Due to common e�ect of the octupole �eld and of the space charge �elds of the beam the
tune shift inside the beam varies according to

�!y(I) = aI � 
(I):

That results in the Landau damping of dipole oscillations. The frequency distribution and
the frequency spread in the beam depend on the sign of a. Correspondingly, the values of
the Landau damping decrements and widths of oscillation stability diagrams also depend
on the sign a.

For numerical calculations below we assumed a Gaussian transverse distribution of
ions in the beam
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f(Jx; Jy) =
1

2��x�y
exp

�
� Jx
2�x

� Jy
2�y

�
; Ix;y =

pJx;y
2

;

and the following model tune distribution in the beam due to its space charge


 =
!0��L

1 + Jy=�y
:

In this case, the total variation of the betatron tune with an increase in the amplitude
of betatron oscillations will be a monotonous function of I, if a � 0, and will have a
maximum, if a < 0 (Fig.7.2).
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Figure 7.2: Dependence of the tune shift on J=� due to common e�ect of the octupole
and of the space charge �elds. Solid line { a > 0, dashed line { a < 0, ��L=��3 = 8.

In the last case, apart from the single-particle oscillation degeneration (��(I1) =
��(I2)) the width of the tune distribution in the beam substantially shrinks. The (one-
dimensional) stability diagrams were calculated for one-dimensional Gaussian distribution
functions according to the following equations

�1 = z � q2(z)

q1(z)
; a > 0; (7.35)

where

�1 =

1

�!3
; z =

�!1
�!3

; �!3 = ap� = !0��3

and

qn =

Z 1

0

duune�u

[z � u+ �(u) + i0]
; �(u) =

��L
��3(1 + u)

; n = 1; 2: (7.36)
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Figure 7.3: Stability diagram for dipole coherent oscillations. Oscillations are stable below
the curve; a > 0, from left to right ��L=��3 is subsequently equal to 8, 6, 4, 2 and 1.

Inspecting Figs.7.3 and 7.4 we see that in the case, when a > 0, the maximal height
of the stability diagram is approximately equal to �!3 but the horizontal width increases
with an increase in the value of the Laslett tune shift. On the contrary, if a < 0, an
increase in the value of the Laslett tune shift is accompanied by the decrease in the height
of the stability diagram. So that for more e�ective damping of the dipole oscillations the
octupole �elds should produce the positive shift of the frequencies of betatron oscillations.

These calculations show that for a given value of the beam current the threshold values
of the loss factors (real part of the impedances) are determined by the Landau damping
due to the cubic nonlinearity of the guiding �eld. The Landau damping due to nonlinearity
of the beam space charge forces is very e�ective in the suppressing of the conventional
instabilities which occur due to strong reactive part of the coupling impedance. The
transverse feedback system is not necessary under these conditions.

7.2.3 Longitudinal multibunch instabilities

Among other reasons, these instabilities occur due to interaction of the longitudinal co-
herent oscillations with the higher order modes of the accelerating system. For the sake
of simplicity we assume the uniform �lling pattern of the beam. Then, the increments
of the multibunch (dipole synchrotron) modes due to interactions of bunches with HOM
can be written in the following form (see, for example, in Ref.[1], or [8])

Æm;a = m
MX
k=1


k exp

�
� �

Qk

�
F (�k; m�s + a); m = �1; a = 0; 1; : : : h� 1; (7.37)
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Figure 7.4: Same as in Fig.7.3, but a < 0.

F (x; y) =
�

nb

�
cos(2���)� p

1� 2p cos(2���) + p2
� cos(2��+)� p

1� 2p cos(2��+) + p2

�
; (7.38)

�� =
x� y

h
; p = exp

�
� �

Qk

�
:

Here, k is the number of the HOM, �k = !k=!0 (!k is the frequency of the k-th cavity
mode), and Qk is the Q-value of the cavity HOM mode. The parameter

1=�mb = 
 = Nc
ZeI(Zk=Qk)

T0pv

h2�

4�s
; h = !RF=!0: (7.39)

determines the maximum increment of unstable multibunch modes due to their interaction
with HOM number k. The modes can be stabilized by the Landau damping of synchrotron
coherent oscillations. The cubic nonlinearity of the RF-�eld produces the synchrotron
frequency spread

�!s = �!s0
�
�B

4

�2

; B =
2�s
�RF

: (7.40)

Increments of unstable modes should exceed the value �!s. Results of calculations of
the parameters of the HOM of accelerating cavities [9] are summarized in the Table 6.3.
Substituting these data in Eq.(7.39) enables the calculations of the mode increments
depicted in Figs.7.5 and 7.6. As is seen from Fig.7.5, the interaction with the HOM of
accelerating cavities does not pose any problems. In both cases, all multibunch modes
are well damped by the Landau damping due to cubic nonlinearity of the RF �eld.
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Figure 7.5: Dependence of increments of multibunch modes (Æk=�!s) on the mode num-
ber. Injection energy W=10 MeV/u, bunching factor is 0.7, beam intensity is 1013 of U4+
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Figure 7.6: Same as in Fig.7.5, but W=125 MeV/u.
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7.2.4 Interaction with the fundamental RF-modes of accelerat-

ing cavities

In high current machines with long perimeters of the orbit one of the most important
source of the multi-bunch longitudinal instability may occur due to the interaction of the
beam with the fundamental mode of the accelerating RF-cavity. According to Eqs.(7.37)
and (7.38) in the exact resonance, when the ratio !r=!0 is an integer number proportional
to the number of bunches in the beam, the increments of all multibunch modes vanish.
However, if for some reason the RF frequency deviates by some amount from the resonant
frequency of the fundamental mode of the cavity, the increments of the multibunch modes
take �nite values. According to Eqs.(7.37) these values are higher the higher are the har-
monic number (h), Z0=Q and the number of the cavities on the orbit. For the discussed
synchrotron, the e�ect of the cavity detuning was evaluated calculating the maximum
increments of unstable modes. As is seen from Fig.7.7, the increments of the synchrotron
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Figure 7.7: Dependence of the maximum increment of dipole synchrotron oscillations (in
units of the synchrotron tune spread) on the cavity detuning. Upper line: W = 125
MeV/u, lower line: W = 10 MeV/u, beam intensity is 1013 of U4+ ions, B = 0:7, h = 994.

coherent dipole modes due to their interactions with the fundamental mode of the ac-
celerating RF-system are substantially smaller than their Landau damping decrements.
So that these instabilities do not limit the high intensity operations of the synchrotron
during the ion acceleration.

7.2.5 Transverse singlebunch instabilities

The threshold current in a bunch due to wideband single bunch instability can be de-
termined by two kind of phenomena. First is the head-tail instability due to chromatic
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dependences of betatron tunes on the ion energy. Since the ring should be capable to
operate the momentum spread in the beam up to �0:7 %, the ring chromaticity must be
compensated with suÆcient accuracy anyway. That will reduce, or eliminate the conven-
tional head-tail instability. Another possibility occurs, when the wideband interactions of
ions inside the bunch results in the so-called synchrobetatron mode coupling instability.
The threshold of this instability is evaluated comparing the coherent frequency shift of the
dipole betatron mode calculated for the beam of a zero length to a half of the frequency
of synchrotron oscillations (!0�s) [11]. Taking for the sake of simplicity that ions in a
bunch interact via step-like transverse wakes, we �nd that the coherent tune shift of the
dipole mode can be written in the following form (see, for example, in Ref.[8]):

��? =
Z

A

eI

2pv�?B

�
R2

0

l2?

��
Zw
n

�
; (7.41)

where �av is the averaged value of the �-function of the ring, B is a bunching factor
and (Zw=n) is the coupling impedance of the vacuum chamber due to non-stationary
wakes. Comparing the value of ��? in Eq.(7.41) and �s=2, we obtain an expression for
the threshold bunch current (electric)

Ith =
Bl2?

(Zw=n)�avR0

r
2eV AW�h

2�Z
: (7.42)

For our estimations we take (Zw=n) = 25 Ohm, which substantially exceeds similar typical
values in the modern high-current machines and roughly estimates the contributions of
the higher order modes of the RF cavities in the accelerating system. Direct calculations
yield

Ith = 51:8 [A]; W = 10 [MeV=u];

and
Ith = 163:4 [A]; W = 125 [MeV=u]:

These numbers clearly show that single bunch mode-coupling instabilities do not limit
the beam performance in the discussed synchrotron.
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Chapter 8

Conclusions

Presented calculations show that the compression of the beam of U4+ ions in a single
bunch having the length of 10 ns and focused on the target in a spot with desired diam-
eter is quite feasible both for the bunch containing 1012 of U4+ ions and for the bunch
containing 1013 of U4+ ions. Such a possibility is mainly provided due to small longitudinal
(�s =3 [keV/u]�ns) and transverse normalized (�? = 1 mmmrad) emittances , which are
expected from new UNILAC. However, the realization of this possibility in practice still
is a very challenging problem in the particle accelerator physics. It demands elimination,
or substantial reduction, of at least several e�ects limiting the synchrotron operational
performance. One of the most important limitations occurs due to very low lifetime of
the U4+ ions caused by their charge changing collisions with atoms of the residual gas.
For the gas pressure of P = 0:01 nTorr and the gas mixture of 77%H2+20%N2+3%Ar,
this lifetime is about 2 s at the injection energy (10 MeV/u) and about 5 s for the �nal
ion energy 125 MeV/u. If the acceleration time is taken as 0.3 s and if we want to limit
the number of the lost ions during the synchrotron cycle to of 10 % of the beam intensity,
then the time available for the post-acceleration beam manipulations reduces to about
50 ms. In the longitudinal compression mode, during this time the bunch has to be de-
bunched and after re-bunching in a single bunch its length has to be reduced down to
10 ns (or, till another desirable value). A decrease in the residual gas pressure increases
the discussed lifetime linearly. However, with the same pressure of the residual gas in the
vacuum chamber of the synchrotron, a signi�cant increase in the lifetime can be achieved,
if the populations of heavy atoms in the gas mixture are reduced. The reason is that
contributions to the particle loss rates given by a population of the gas particles of the

sort k in the mixture in are determined by the factors Y (k)(Z2
T + ZT )

(k)
, where Y (k) is the

partial concentration of the atoms of a sort k in the mixture (
P

k Yk = 1), and (ZT )
(k) is

the atomic number of atoms of the sort k. So that the total ion loss rate is proportional
to the value

R =
X
k=1

Y (k)(Z2
T + ZT )

(k)
:

For the mixture 77%H2+20%N2+3%Ar the value of R is equal to

R = 3:08 + 22:4 + 10:26 = 35:74:
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Factor R has about same value (R =37.8) for the mixture 90%H2+10%Ar, but becomes
�2.5 times smaller (R =14.8) for the mixture 90%H2+10%N2. Correspondingly, with
same gas pressure the lifetime in the last case, will be 2.5 times larger (5 s for W= 10
MeV/u and 12.5 s for W = 125 MeV/u) than for the mixture of 77%H2+20%N2+3%Ar.
Since no experimental data is available concerning the charge changing collisions of U4+

ions with the residual gas atoms, the lifetime was evaluated using results of calculations
of relevant cross sections from Ref.[3]. The accuracy of these calculations is given by a
factor of about 2. For this reason, the measurements of these cross sections would be
very desirable prior to future technichal design of such a synchrotron. If the lifetime is
in the range of several seconds, the desired lengths of the compressed bunches can be
achieved during available short periods only in the case, if the momentum spread in the
beam before compression is very small (�p = 10�5, or lower). For realistic parameters of
the accelerating RF system this requirement �ts the injection conditions and the condi-
tions of the phase space matching of the injected bunches longitudinal emittance to the
longitudinal acceptance of the synchrotron. However, the perturbations increasing the
bunch momentum spread uncontrollable (e.g. noises in RF system) should be reduced in
subsequent synchrotron designs.

In the synchrotron with the closed orbit circumference of 1200 m and using as an
injector new UNILAC, the beam with intensity of 1012 of U4+ ions is obtained using
the 2-turn injection, while the beam with intensity of 1013 of U4+ ions is obtained using
the 20-turn injection. The 20-turn injection takes 0.5 ms, which is two times shorter
than the length of the bunch train from the UNILAC. In both cases, the longitudinal
space charge �elds of the beam must be compensated by a suÆciently strong longitudinal
electrical �eld of the accelerating RF system. For a given bunch in the beam, new injected
bunches are distributed in the transverse phase space and are injected in the same RF
bucket. Correspondingly, the amplitude of RF voltage must be increased linearly during
0.5 ms from about 150 kV till 3 MV. This requirement does not limit the RF system
performance. During injection and during the bunch compression operations the beam
parameters correspond to the cases, when the perturbations due to space charge �elds
dominate. During multiturn injection transverse space charge �elds can result in the
transverse coherent instability of a macrobunch in the beam, if the betatron tunes are
within the stopband de�ned in Eq.(7.16). Since the instability occurs due to relative
motions inside a macrobunch, it cannot be suppressed by conventional feedback systems
correcting dipole oscillations of the macro bunch. Although fast betatron debunching
can reduce the limitations due to this instability, more careful study of this phenomenon
could be very desirable. Other limitations due to transverse space charge �elds of the
beam during the synchrotron operations are reduced to incoherent phenomena and are
common for such type of machines. These problems are most important for low energies
of ions and can be eliminated by fast acceleration of ions. Since the high intensity beam is
obtained using the multiturn injection, these incoherent problems are of the same strength
for both low total current and for high total current beams. The bunch compression is
performed in three steps using the �=2 rotation in the longitudinal phase space. After
acceleration the beam is debunched using adiabatically slow decrease in the accelerating
RF voltage. It takes approximately 20{30 ms. After this period the beam occupying
90% of the closed orbit perimeter is passed in the 'Energy modulation orbit' line of the

103



bypass (Fig.5.4) for the energy modulation. For the beam with a gap the prebunching
step becomes not necessary. The ion energy is modulated along the bunch by increasing
the RF voltage linearly in time. To the next turn this dependence is repeated again so
that the time dependence of RF voltage has a sawtooth form. This voltage is generated
using inductive type accelerating devices. If the amplitude of RF voltage is set to 1.2
MV, required momentum modulation of �0:7 % takes 100 turns. For the next 29 turns
the bunch is passed into the RF-free 'Compression and extraction orbit' line of the bypass
for the �nal compression. The bunch compression was simulated using the codes which
take into account 2-dimensional, or 6-dimensional ion motions in the bunch phase space.
The space charge �elds of the bunch were accounted in these codes within the framework
of the simpli�ed model, when space charge forces depend on the ion coordinates only
linearly. In addition, no chromatic e�ects on the ion motion were taken into account.
These simulations enabled us to �gure out the main speci�c features of the longitudinal
bunch compression as well as to �nd a lattice design of the ring, where the compressed
bunch does not blowup transversely during its compression until the bunch length reaches
its minimum 1. Due to model used, only parametric resonances could yield such a blowup
in the simulations. On the other hand, the number of turns, when the Laslett tune shift
takes substantial values (say, ��L = 0.3) is only several (6) turns. So that nonlinear
resonances have no time to perturb the bunch signi�cantly. Rapid dependences of the
�nal bunch length on the amplitude of RF voltage as well as of the transverse bunch sizes
on the values of the quadrupoles in the arcs show that e�ects of chromatic corrections
and of modi�cations of the dispersion function of the ring on the bunch compression may
demand additional studies. Those should be addressed in a future design works on such
a synchrotron. The lattice of the ring was chosen to simplify the beam operation in the
space charge dominated modes. As we said, these are the injection into the ring and
especially the �nal turns of the bunch compression. The lattice consists of 2�50 identical
FODO cells in the arc region connected by two straight sections. One of these straight
sections is used for the injection/extraction operations, while the opposite one contains
the 3 beam line bypass. Except for the special switching magnets for bypass operations,
the lattices of the straight sections are also build up of the FODO cells similar to that in
the arcs but with missing bending dipoles. The length of a cell is 10 m both in arcs and
straight sections. For better distribution of the accelerating RF stations and of the bypass
switching lattice the length of the straight section should be increased to 200 m, so that the
total perimeter of the closed orbit of the synchrotron will be 1400 m. This will not change
the design parameters signi�cantly. For example, the top RF frequency of the accelerating
system will decrease from 117 MHz to 100 MHz, which is inside the design interval of
frequencies; the number of injection turns required to inject 1013 ions will decrease from 20
to 13. Correspondingly, the maximum beam radius at the injection energy will decrease
from about 5.5 cm to 4.4 cm. The RF system of the discussed synchrotron consists of
two parts. The �rst is the accelerating RF system. It provides the accelerating voltage
up to 3 MV in the frequency range from 36 MHz to 117 MHz using ferrite loaded RF
cavities (stations). The total length which occurs one station along the closed orbit is 0.4
m. The required number of stations is 250, all the system occupies 100 m of the orbit

1However, the beam can blowup transversely during the next turn.
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in the bypass line 'Injection orbit' Fig.5.4. The second RF system provides the energy
modulation for the bunch compression (line 'Energy modulation orbit' in Fig.5.4). This
system uses the inductive type acceleration devices, which provide the amplitude of the
sawtooth-shape Rf voltage of 2.5 MV using 30 m of the beam line in the bypass. As we
already mentioned, the �nal bunch length strongly depends on the amplitude RF voltage.
Due to beam loading this voltage can depend on the beam current. For this reason, the
ring operation may demand special feedback systems keeping the acting amplitude of the
RF voltage within the required range (typically, about 1 kV).

In the discussed synchrotron, conventional coherent instabilities do not pose any sig-
ni�cant limitations on the beam current even for a beam containing 1013 of U4+ ions.
The multibunch instabilities of the synchrotron coherent oscillations due to interactions
of bunches with RF-system are well suppressed by the synchrotron frequency spread in
the bunches for all ion energies. For dipole betatron oscillations, the Landau damping
should be provided by a family of octupoles. In this case, the height of the stability dia-
gram (the maximum damped increment) is determined by the strength of octupole �elds,
while the width of this diagram (the maximum coherent frequency shift) is determined
by the largest of the frequency spreads due to octupole �eld and due to space charge
�elds (' 0:2!0��L). However, the longitudinal feedback system can be useful to damp
coherent oscillations during the beam debunching.

Additional problems may pose possible microwave radiations of bunches due to low
cuto� frequencies in wide vacuum chambers. Traveling along the beam these waves may
result in additional multibunch coupling of coherent oscillations in the beam. This prob-
lem also should be addressed to future studies. Both elastic and inelastic intrabeam
scattering processes do not limit the performance of the discussed synchrotron in the
bunch compression mode.
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Table 8.1: General parameter set for the U4+-synchrotron operating in the bunch com-
pression mode.

Circumference m 1400
Injection energy MeV/u 10
Extraction energy MeV/u 125
Injected ions/bunch 1/108 6.51
Injected ions/turn 1/1011 7.
BRin Tm 27.23
BRf Tm 100
Acceleration time s 0.3
Revolution period (injection energy) �s 32.2
Revolution period (�nal energy) �s 10
Harmonic number 1160
Acceleration rate keV/turn 300
Betatron tune vertical� 0.4512
Betatron tune horizontal� 0.4831
Accepted momentum spread % �1.4
Betatron acceptance mmmrad 360
(��L)inj 0.215
(��L)f 0.06
Vacuum nTorr below 0.01
Beam lifetime (injection) s 2.1
Beam lifetime (extraction) s 5.2
Beam intensity loss factor % 10
� Fractional part

Table 8.2: Parameter set for the U4+-synchrotron operating in the low and high intensity
bunch compression modes.

Number of ions 1012 1013

Number of injections/bunch 2 13
RF-amplitude MV 0.6 3
Synchronous phase 0.4� 0.46�
Transverse emittance (inv.) mmmrad 2 13
Transverse emittance (non-inv.) mmmrad 13.8 90
Bunch length (�s; injection) m 0.25 0.34
Momentum spread (injection) o/oo 0.01 0.01
Bunching factor (2�s=�RF ) 0.5 0.7
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Table 8.3: Parameter set for the bunch compression of an intense bunch of U4+ ions.

Number of ions 1013

Ion energy MeV/u 125
Initial bunch length �s 8.5
Final bunch length ns 10
Initial momentum spread �3� 10�6

Final momentum spread % �0.7
Vertical beam size at extraction point mm 8
Horizontal beam size at extraction point mm 4
Energy modulation voltage MV 1.2
Number of turns for energy modulation 100
Number of turns for �nal compression 29
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Appendix A

Synchrotron Oscillations

In this Appendix we discuss several subjects related to the description of the synchrotron
oscillations in the heavy ion synchrotron.

A.1 Acceleration voltage

The voltage required to accelerate the ions with the charge Ze and atomic number A
from the energy Ein = mpc

2 +Win till the energy Ef during the time interval �t can be
calculated using the basic acceleration equation (see, for example, in Ref.[13]):

dE

dt
=

ZeU

AT0(E)
=
ZeUc

A�

pcp
(pc)2 + (mpc2)2

; (A.1)

Here, U = V cos(�s) is the accelerating voltage, �s is the synchronous RF-phase and
pc = 300ZB(t)R=A. Using

dE

vdt
=
dp

dt
;

we rewrite Eq.(A.1) in the following form

c[pf � pin] =
Zec

A�

Z �t

0

dtU(t): (A.2)

Assume for simplicity that U does not change during acceleration, we �nd

c[pf � pin] =
ZeUc�t

A�
; (A.3)

or

eU = 300 ([BR]f � [BR]in)
�

c�t
: (A.4)

In a low intensity bunch the equations describing synchrotron oscillations of ions read

d�p

dt
=
ZeV

A�
[cos(�)� cos(�s)] ;

d�

dt
= h!0(p)�

�p

p
;
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or, for small oscillations (� = �s + hz=R0, jzj � �RF , �RF = �=h;)

d�p

dt
= �ZeV sin(�s)

A2�R2
0

hz; (A.5)

dz

dt
= v�

�p

p
: (A.6)

These equations are obtained using the Hamiltonian

H =
v�

2p
�p2 +

ZeV sin(�s)h

2A2�R2
0

z2:

De�ning � = p=(�v) and

!s = !0�s; �s =

s
ZeV sin(�s)h�

A2�pv
; (A.7)

we arrive at an equation de�ning the phase space ellipse

�p2

2�!sJs
+
�!sz

2

2Js
= 1; H = !sJs: (A.8)

The area of this ellipse is

SJ = 2�Js:

The longitudinal bunch emittance is encircled by the ellipse with SJ = �s, so that Js =
�s=(2�) and

�pv�

!0�s�s
Æ2 +

�!0�spv

��s
� 2 = 1; Æ =

�p

p
; � =

z

v
:

The main half-axes of this ellipse read

Æb =

r
2�s�s
pv�T0

; �b =

s
��sT0
2�2�spv

: (A.9)

If both the required accelerating voltage and the RF harmonic number are high, the ion
synchrotron oscillations cannot be described in the adiabatic approximation. Assuming a
single RF-cavity on the orbit placed at s = 0, we obtain relevant transport matrixes for
synchrotron oscillations using the following equations

x00 + g(s)x =
Æ

R(s)
; Æ0 = �ZeV sin(�s)h

ApvR0

zÆ (s) ; (A.10)

z0 = � x

R
+

Æ


2
: (A.11)

Here, g(s) is the rigidity of the horizontal betatron oscillations. Now, we write
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x = xb +D(s)Æ; xb =
p
Jx�x(s) cos[�x(s)];

d�x
ds

=
1

�x
; (A.12)

and D(s) is the dispersion function of the ring. According to the second equation in
(A.10) the variation of the ion momentum after passing the cavity is described by the
transport matrix

M(k) =

�
1 0
�k 1

�
; k =

ZeV sin(�s)h

ApvR0
: (A.13)

The variation of z over the closed orbit perimeter depends on the coupling of the horizontal
betatron and of the synchrotron oscillations

z(�) = z(0) + ��Æ �
Z �

0

ds
xb
R(s)

: (A.14)

Since

d[xbD
0 � x0bD]

ds
=
xb
R
;

Eq.(A.14) reads

z(�) = z(0) + ��Æ � [xbD
0 � x0bD]j�0 : (A.15)

If both dispersion function and its derivative vanish at the cavity position, no synchro-
betatron coupling occur while the ion phase is transformed using the matrix

B =

�
1 ��
0 1

�
:

The matrix multiplication results in

M(k=2)BM(k=2) =

�
1� (k��)=2 ��
�k + (k2��) =4 1� (k��)=2

�
: (A.16)

Using this equation, we �nd

cos(�s) = 1� k��

2
= 1� �

ZeV sin(�s)h�

Apv
= 1� 2�2�2s ; (A.17)

and

�s =
��p

1� (1� 2�2�2s )
2
=

�R0

�s
p
1� �2�2s

: (A.18)

The oscillations become unstable, if �s � 1=�. More generally, if ions pass m identical
RF-stations uniformly distributed along the orbit circumference, Eq.(A.17) reads

cos�s = 1� 2�2�2s
m

: (A.19)

110



Correspondingly, the synchrotron oscillations are stable in a wider region of the RF-
amplitudes in a single RF-station (�s �

p
m=�)

ZeV sin(�s)h�

A2�pv
� m

�2
: (A.20)

Relevant accelerating voltage (mU) increases proportional to the square of the number of
RF-stations.

A.2 Synchrotron oscillations in a space charge dom-

inated bunch

If the accelerated bunch is short, its space charge �elds may a�ect substantially the
synchrotron oscillations of particles. In such a case, we have to add in the right-hand side
of Eq.(A.5) the contribution due to the longitudinal electric �eld of the bunch

E =
ZNe�


2
d�

dz
; � = 1 + 2 ln

�
l?
a

�
: (A.21)

Here, N is the number of particles in the bunch, � is its linear density, l? is the pipe
radius and a is the bunch cross section radius. For the sake of simplicity we take that �
is a parabolic distribution

�(z) =
3

4�s

�
1� z2

�2s

�
: (A.22)

Then, the modi�ed Eq.(A.5) reads

dÆ

dt
= �ZeV sin(�s)

ApR0�RF

�
1� �3th

�3s

�
z; (A.23)

where

�th =

�
3

2
mpc

2ZNrp�R0�RF

2eV sin(�s)

�1=3

: (A.24)

Equation (A.23) shows that with an increase in the bunch linear density synchrotron
oscillations will be stable provided that the bunch length exceeds �th de�ned in Eq.(A.24).
The phase space trajectories of synchrotron oscillations still are the ellipses. For the ellipse
encircling the longitudinal bunch emittance the main half-axes which are determined in
Eqs.(A.9), but the synchrotron tune in these equations should be modi�ed according to

�s ! �s(N) =

s
ZeV sin(�s)h�

A2�pv

�
1� �3th

�3s

�
(A.25)

So that the modi�ed Eqs.(A.9) will read
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�2b

s
1� �3th

�3s
= �20 =

��s�

2�2�sp
; (A.26)

Æb =

s
2�s�s
pv�T0

�
1� �3th

�3s

�1=2

: (A.27)

If the length of the low intensity bunch is small (�0 � �th), the root in Eq.(A.26) occurs
to be close to �th:

�b ' �th +
�40
3�3th

: (A.28)

Corresponding value of the bunch momentum spread is small

Æb ' �s
�pv�th

: (A.29)

A.3 Inertial bunch compression

Inertial bunch compression occurs, if we provide a correct modulation of initial ion mo-
menta along the bunch and if the longitudinal space charge �elds of the compressed bunch
are small. If N is the number of particles in the bunch, while za and Æa = �pa=p are
positions of the particle (a) [a = 1; 2; : : :N ] in the longitudinal phase space, then after
the momentum modulation Æa = Æa0 � �za0 and subsequent pass of the drift space of the
length L, the particles get the following positions in the bunch

za = za0 + �LÆa = za0(1� �L�) + �LÆa0: (A.30)

With statistically independent distribution in particle initial conditions, the rms bunch
length reads

�2s =
1

N

NX
a=1

(za� < z >)2; < z >=
1

N

NX
a=1

za;

or

�2s = �2s0(1� ��L)2 + �2L2�2Æ ; (A.31)

where

�2Æ =
1

N

NX
a=1

(Æa0 ��)2; � =
1

N

NX
a=1

Æa0

is the momentum spread in the bunch before modulation. Simple transformations result
in

112



�2s = �2

�
�L� ��2s0

�2

�2

+ �2s0
�2Æ
�2
; �2 = �2Æ + �2�2s0: (A.32)

Considered as a function of the compression length L, the bunch length reaches its mini-
mum

�2min = �2s0
�2Æ

�2Æ + �2�2s0
; (A.33)

when

L = Lmin =
1

��
� 1

1 + (�Æ=��s0)2
: (A.34)
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Appendix B

Charge Exchange and Ionization

According to our knowledge, experimental data on charge changing cross sections for U4+

ions are not available yet. For this reason, in our estimations of the particle losses from
the beam we use results of the calculations, which have been performed in Ref.[5] and [6].
In Ref.[5] the total cross section of the charge changing scatterings have been calculated
taking into account the charge transfer (CT)

U4+ +U4+ ! U3+ +U5+;

and in the ionization reactions

U4+ +U4+ ! U5+ +U4+ + e:

processes. Results of these calculations are presented in Table B.1 as functions of the so
called relative collision energy. If u is the relative velocity of the colliding ions expressed
in the atomic units (1 a.u.= 2.2�108 [cm/s]), then the relative collision energy reads

Wcol [keV=u] = 25u2 [a:u:]: (B.1)

Assuming that the relative velocity in the beam is mainly determined by

ua:u: = 104
�

3

2:2

�2
(v=c)�0
�av

;

we obtain

Wcol ' 4:62� 105
(v=c�0)

�av
[keV=u]: (B.2)

Here, �av is the average value of the �-function of the ring and �0 is the invariant transverse
beam emittance.

The estimated accuracy of the cross section given in Ref.[5] is a factor of 2. However, if
we take as an example �0 = 20 mmmrad and �av ' 16 m, we shall �ndWcol ' 0:3 [keV/u].
This value of the collision energy is well below the lowest border of the data given in the
Table B.1. The calculations of the charge transfer cross sections in wider collision energy
range were made in [6] (Table B.2). As is seen from Fig.B.1, in the common region of the
energies the data from Tables B.1 and B.2 mainly di�er by a factor of about 3.
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Table B.1: Cross sections of the charge exchange and ionization according to Ref.[5].

Collision Cross sections, Collision Cross sections,
energies, �10�16 cm2 energies, �10�16 cm2

keV/u. CT I keV/u. CT I

1.000 .011 112.5 .856 .722
2.250 .092 134.1 .145 .742
4.000 .198 150.0 .010 .736
6.250 2.06 .012 187.0 .721
10.00 2.61 .054 226.0 .691
18.75 2.76 .243 262.0 .663
37.50 1.83 .384 375.0 .602
75.00 .891 .698 750.0 .403

1500. .242

Table B.2: Total cross sections of the charge exchange collisions of U4+ ions according to
Ref.[6].

Wcol [keV/u] �tot � 1016 [cm2] Wcol [keV/u] �tot � 1016 [cm2]

0.1 0.0012 20.0 7.1
0.2 0.015 40.0 7.1
0.4 0.12 100.0 5.7
0.8 0.53 200.0 3.4
1.0 0.78 400.0 2.4
2.0 2.0 800 1.1
4.0 3.9 2500 0.088
8.0 5.8 5000 0.010
10 6.2 10000 0.00086
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Appendix C

Intrabeam Scattering Growthrates

Here we follow Ref.[1] and assume the smoothed focusing approximation. then, the vertical
emittance blowup rate due to IBS in a non-relativistic bunch reads (�x ' �y = �)

d ln �y
dt

=
K�

�2y�x�sÆ

Z
d


4�

1� 3 sin2 � cos2 �

a sin2 � + as cos2 �
; K =

N(Z2=A)2r2pcLIBS

2�
4(v=c)2
:

Here LIBS { Coulomb logarithm, a = �=�, �x ' �y = � and

as = 
2a
D2

�2
+

2

Æ2

with D { dispersion and Æ = �p=p. Now, we write

d ln �y
dt

=
K�

�3�sÆ

Z 1

0

dz

Z 2�

0

d�

2�

1� 3 cos2 �[1� z2]

(as � a)z2 + a

=
K�

�3�sÆ

Z 1

0

dz
1� 3[1� z2]=2

(as � a)z2 + a

= � K�

2�3�sÆ

Z 1

0

dz
1� 3z2

(as � a)z2 + a
:

Using

as � a =

2

Æ2
+ a

�

2D2

�2
� 1

�
= a

�

2�

Æ2�
+

2D2

�2
� 1

�
;

we obtain
d ln �y
dt

= � K��

2�3�sÆ�

Z 1

0

dz
1� 3z2

qz2 + 1
; q =


2�

Æ2�
+

2D2

�2
� 1:

The integral is calculated directly:Z 1

0

1� 3z2

qz2 + 1
dz =

1�p
q
�3 (�3pq + [3 + q] arctan

p
q) : (C.1)
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That results in

d ln �y
dt

= � K

2�2�sÆ

 
[3 + q] arctan

p
q � 3

p
q�p

q
�3

!

= �N(Z2=A)2r2pcLIBS

4�
4�2(v=c)2�sÆ

 
[3 + q] arctan

p
q � 3

p
q�p

q
�3

!
:

Using that 
(v=c)� = �0 is an invariant, we can also write

d ln �z
dt

' �N(Z2=A)2r2pcLIBS

4�
2�20�sÆ

 
[3 + q] arctan

p
q � 3

p
q�p

q
�3

!
:

Another possibility occurs, if the value q is negative. De�ning p = �q > 0 we �ndZ 1

0

1� 3z2

1� pz2
dz =

3

p
+
p� 3

p3=2
1

2
ln

�p
p+ 1

1�pp
�
: (C.2)

Hence,
1

�y
=
d ln �y
dt

' �N(Z2=A)2r2pcLIBS

4�
2�20�sÆ

�
3

p
+
p� 3

2p3=2
ln

�p
p+ 1

1�pp
��

;

p = 1� 
2�

Æ2�
� 
2D2

�2
:

Note, that this growth-rate does not depend on particle kinetic energy until Æ >
p
(�=�).

Similarly, for the longitudinal motion we write

d ln(Æ2)

dt
=

K
2

�x�y�sÆ3

Z �

0

d� sin �

2

1� 3 cos2 �

a sin2 � + as cos2 �

=
K
2

�2�sÆ3
�

�

Z 1

0

dz
1� 3z2

1 + qz2
: (C.3)

Using Eqs.(C.1) and (C.2) we rewrite this expression in the following form

1

�s
=
d ln(Æ2)

dt
=
N(Z2=A)2r2pcLIBS

2�
(v=c)�0��sÆ3

8>><
>>:

[3 + q] arctan
p
q � 3

p
q�p

q
�3 ; q > 0

3

p
+
p� 3

2p3=2
ln

�p
p+ 1

1�pp
�
; p = �q > 0:

(C.4)

The ratio of the transverse to the longitudinal growth rates is estimated by the following
expression:

(1=�)

(1=�s)
=

1

2

�Æ2


2�
(C.5)
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For the horizontal oscillations we write [1]

d ln �x
dt

=
K�

�3�sÆ

Z
d


4�

�
1� 3 sin2 � sin2 �

a sin2 � + as cos2 �
+

2D2

�2
1� 3 cos2 �

a sin2 � + as cos2 �

�

=
K�

�3�sÆ

�

2D2

�2
� 1

2

�Z 1

0

dz
1� 3z2

a+ [as � a]z2

=
K

�2�sÆ

�

2D2

�2
� 1

2

�Z 1

0

dz
1� 3z2

1 + qz2
:

So that

1

�x
=
N(Z2=A)2r2pcLIBS

2�
2�20�sÆ

�

2D2

�2
� 1

2

�8>><
>>:

[3 + q] arctan
p
q � 3

p
q�p

q
�3 ; q > 0

3

p
+
p� 3

2p3=2
ln

�p
p+ 1

1�pp
�
; p = �q > 0:

(C.6)

The sum of the partial growth-rates reads

� =
1

�x
+

1

�y
+

1

�s
=

Kq

�2�sÆ

Z 1

0

dz
1� 3z2

1 + qz2
(C.7)

=
K

�2�sÆ

�
(3 + q)

Z 1

0

dz

1 + qz2
� 3

�
; (C.8)

q =

2�

Æ2�
+

2D2

�2
� 1:
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Appendix D

Collective Phenomena

D.1 E�ects of the space charge �elds on dipole co-

herent oscillations

In this Section we obtain dispersion equations for the dipole coherent oscillations of the ion
beam which takes into account the space charge repulsion of ions. For the sake of simplicity
we assume one-dimensional coherent oscillations and smoothed focusing approximation.
In this case, the Vlasov equation reads

@f

@t
+ v

@f

@x
+
��M!2

xx + bx3 + F (x� d) + F2(t)
� @f
@px

= 0: (D.1)

Here, f = f(x; px; t) is the distribution function of the ion beam,

d(t) =

Z
dpxdxxf (D.2)

is the dipole momentum of the beam, F (x � d) is the force describing the space charge
repulsion of ions, while F2(t) is the force describing the interaction of the beam dipole
oscillations with surrounding electrodes. The term bx3 describes e�ects of the cubic
nonlinearity of the guiding magnetic �eld. In the linear approximation on the amplitude
of coherent oscillations we write

F (x� d) ' F (x)� d(t)
@F

@x
; (D.3)

and

f = f0(x; px) + Æf(x; px; t); (D.4)

where f0 is the beam distribution function without coherent oscillations, while Æf describes
coherent oscillations. It is more convenient to perform subsequent calculations using the
action-phase variables of unperturbed oscillations. We write

x =

r
2I

M!x
cos ; px = �

p
2IM!x sin ; (D.5)
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and assuming that the working point of the ring is far from machine resonances f0 = f0(I).
For non-resonant oscillations the terms bx3 and F (x) in the square bracket in Eq.(D.1)
give the following frequency shifts of the unperturbed oscillations

�!x = �
(I); 
(I) =

Z 2�

0

d 

2�

@x

@I
F =

1p
2IM!x

F1 + F�1
2

; (D.6)

and

�!(a)
x = aI; a = � 3b

4M2!2
x

; b =
Zev

6c

@3Hz

@x3
: (D.7)

Here,

F�1 =

Z 2�

0

d 

2�
Fe�i :

Since F (�x) = �F (x), we have Z 2�

0

d 

2�
F sin( ) = 0;

so that F1 = F�1, while


(I) =
F1(I)p
2IM!x

: (D.8)

In the action-phase variables the linearized Vlasov equation reads (see, for example, in
Ref.[8])

@Æf

@t
+ [!x + aI � 
(I)]

@Æf

@ 
+

�
F2(t)

@x

@ 
� d(t)

@F

@ 

�
@f0
@I

= 0: (D.9)

Using Fourier transform in time and phase variable

Æf = e�i!t
�
f1(I)e

i + f�1(I)e
�i 
�

(D.10)

and assuming no coupling between modes f�1, we obtain

fm =
m@f0=@I

p
2IM!x

[�!m �maI +m
(I)]

�
F2(!)

2M!x
+ dm(!)
(I)

�
; m = �1 (D.11)

and

dm(!) =

Z 1

0

dI

r
I

2M!x
fm (D.12)

Substituting in Eq.(D.11)

mF2(!)

2M!x
! �
mdm(!); (D.13)
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where 
m is the coherent frequency shift calculated for the beam without frequency
spread, and using Eq.(D.12) we �nd the dispersion equation of the problem in the following
form (m = 1)

1�
Z 1

0

dI
I
(I)@f0=@I

[�!1 � aI + 
(I)]
= �
1

Z 1

0

dI
I@f0=@I

[�!1 � aI + 
(I)]
: (D.14)

Now, using


(I)

[�!1 � aI + 
(I)]
=

�!1 � aI

[�!1 � aI + 
(I)]
� 1

and Z 1

0

dII
@f0
@I

= �1;

we obtain

�!1 = 
1 + a
Q2(�!1; I)

Q1(�!1; I)
; (D.15)

where

Qn(�!1; I) =

Z 1

0

dI
In@f0=@I

[�!1 � aI + 
(I)]
; n = 1; 2: (D.16)

In particular, from Eq.(D.15) we see that without external (cubic) nonlinearity the fre-
quency spread due to space charge �elds produces no Landau damping and no additional
frequency shift of the dipole coherent oscillations:1

�!1 = 
1; a = 0:

1This fact should be expected beforehand. Without nonlinearity of the guiding �eld Eq.(D.1) splits
onto the following uncoupled equations

�d+ !xd =
F2
M

;
@�

@t
+

P

M

@�

@y
+ F (y)

@�

@P
= 0;

where, y = x� d(t), P = px �M _d(t), and f = �(y; P; t).
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Appendix E

Bunching

E.1 Orthogonal transformations of the longitudinal

phase space

In this Section we shall collect some general formulae describing transformations of the
bunch length and its momentum spread due to orthogonal transformations of initial con-
ditions of particles into their instantaneous values. For the sake of simplicity, we neglect
the space charge e�ects on the bunch length. We take that initial distribution of ion in
the bunch is described by a Gaussian function

f0(q; p) =
1

2��Æ
exp

�
� q2

2�2
� p2

2Æ2

�
: (E.1)

Here, q = z0 and p = z00 are initial values of the ion longitudinal coordinates in the phase
space, while � and Æ are their rms widths. If azimuth � is used as an independent variable,
the instantaneous value of the distribution function reads

f(z; z0; �) = f0(q[z; z
0; �]; p[z; z0; �]): (E.2)

We take that an initial point (q; p) is obtained from the point (z; z0) using the following
transformation

q = az + bz0; p = cz + dz0; ad� bc = 1; (E.3)

where a, b, c and d are functions of the independent variable �. Substituting q and p from
Eq.(E.3) in Eq.(E.1), we �nd

p2

Æ2
+
q2

�2
= z2

�
c2

Æ2
+
a2

�2

�
+

�
cd

Æ2
+
ab

�2

�
2zz0 +

�
d2

Æ2
+
b2

�2

�
(z0)2: (E.4)

Note that the determinant of the quadratic form in the right-hand side of this equation
is exactly equal to inverse of the longitudinal phase space volume of the bunch (1=[�Æ]).
The instantaneous linear density of the bunch is calculated using

�(z; �) =

Z 1

�1

d(z0)f(z; z0; �): (E.5)
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Simple transformations in Eq.(E.4) result in

p2

Æ2
+
q2

�2
=

�
d2

Æ2
+
b2

�2

�"
z0 + z

�
cd
Æ2
+ ab

�2

�
�
d2

Æ2
+ b2

�2

�
#2

+
z2

�2d2 + Æ2b2
:

Calculating Gaussian integrals, we �nd

�(z; �) =
1p

2��(�)
exp

�
� z2

2�2(�)

�
; �2(�) = �2d2 + Æ2b2: (E.6)

Similarly, for the momentum distribution we obtain

�(z0; �) =
1p

2�Æ(�)
exp

�
� (z0)2

2Æ2(�)

�
; Æ2(�) = Æ2a2 + �2c2: (E.7)

The rms widths in Eqs.(E.6) and (E.7) de�ne the lengths of the projections of the main
half-axes of the instantaneous phase space ellipse on axes z and z0. For this reason, the
product �(�)Æ(�), generally, exceeds the longitudinal phase space volume of the bunch
[�(�)Æ(�) � �Æ]. Indeed, the rotation

z = Z cos(�) + Z 0 sin(�); z0 = �Z sin(�) + Z 0 cos(�); (E.8)

transforms the quadratic form in Eq.(E.4) to the main axes

z2
�
c2

Æ2
+
a2

�2

�
+

�
cd

Æ2
+
ab

�2

�
2zz0 +

�
d2

Æ2
+
b2

�2

�
(z0)2 =

Z 02

�2
+
Z2

�2
; (E.9)

provided that

sin(2�) =
2(Æ2ab + �2cd)q

[Æ2b2 + �2c2 + �2d2 + Æ2a2]2 � 4�2Æ2
: (E.10)

The values � and � read

�2 =
Æ2b2 + �2d2 + �2c2 + Æ2a2 +

q
[Æ2b2 + �2c2 + �2d2 + Æ2a2]2 � 4�2Æ2

2
; (E.11)

�2 =
Æ2b2 + �2d2 + �2c2 + Æ2a2 �

q
[Æ2b2 + �2c2 + �2d2 + Æ2a2]2 � 4�2Æ2

2
; (E.12)

so that their product does not depend on time:

�� = Æ�: (E.13)

In the simplest case, the transformation in Eq.(E.3) can describe the bunch rotation
with a constant tune of the synchrotron oscillations, so that
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q = z cos( )� z0
sin( )

�s
; p = z�s sin( ) + z0 cos( );  = �s� +  0:

Using these equations, we �nd

�2(�) = �2 cos2( ) + Æ2
�
sin( )

�s

�2

= �2 �
�
�2 � Æ2

�2s

�
sin2  ;

(E.14)

Æ2(�) = Æ2 +
�
�2s�

2 � Æ2
�
sin2  :

These equations show that no bunch compression occurs, if the bunch emittance is
matched to the longitudinal phase space acceptance (�2s�

2 = Æ2). On the contrary, if
�s� � Æ, the bunch length is reduced very strongly after a �=2{rotation. The momentum
spread after such a rotation strongly increases (Æ�=2 = �s�).

E.2 Synchrotron oscillations with variable tunes

In this Section we remind the reader several cases, when equations for small synchrotron
oscillations of a particle can be solved directly even in the case, when the oscillation tune
varies with the time. Taking as an independent variable the ion azimuth �, we write

z00 + �2se
�=�0z = 0: (E.15)

In this example the synchrotron tune varies with time according to

�s(�) = �s exp

�
�

2�0

�
: (E.16)

If �0 > 0, this case may correspond to the bunching due to, for example, an exponential
increase in the RF{voltage. If �0 < 0, this Eq.(E.15) may describe small oscillations
during debunching.

As we said, Eq.(E.15) can be solved directly. Taking as a new independent variable
the function

u = exp

�
�

2�0

�
;

d

d�
=

u

2�0

d

du
;

we transform Eq.(E.15) into the Bessel equation

1

u

d

du

�
u
dz

du

�
+ k2z = 0; k = 2�s�0: (E.17)

which solution reads�
z
z0

�
=

�
J0(ku) N0(ku)

��suJ1(ku) ��suN1(ku)

��
A
B

�
: (E.18)

Here, Jp(x) and Np(x) are the Bessel and Neumann function respectively. Using
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Jp(x)Np+1(x)� Jp+1(x)Np(x) = � 2

�x
;

and solving Eq.(E.18) relative to A and B, we obtain�
A
B

�
= ��0

� ��suN1(ku) �N0(ku)
�suJ1(ku) J0(ku)

��
z
z0

�
: (E.19)

Assuming that initial conditions are given at the point � = 0, we write

�
z
z0

�
0

= ��0

�
J0(k) N0(k)

��sJ1(k) ��sN1(k)

�� ��suN1(ku) �N0(ku)
�suJ1(ku) J0(ku)

��
z
z0

�
(E.20)

Using Eq.(E.19), we �nd the functions a, b, c and d from Eq.(E.3):

a = ��s�0u fJ1(ku)N0(k)�N1(ku)J0(k)g ; (E.21)

b = ��0 fJ0(ku)N0(k)�N0(ku)J0(k)g ; (E.22)

c = ���2s�0u fJ1(ku)N1(k)�N1(ku)J1(k)g ; (E.23)

d = ��s�0 fN1(k)J0(ku)�N0(ku)J1(k)g : (E.24)

Direct calculations result in

ad� bc = 1; (E.25)

so that using Eqs.(E.6) and (E.7) we obtain for the instantaneous rms length and mo-
mentum spread of the bunch

�2(�) = �2d2 + Æ2b2; Æ2(�) = Æ2a2 + �2c2: (E.26)

Since the functions d and b exponentially decay, while the functions a and c exponentially
increase, when ku� 1

d /
p
��s�0e

��=[4�0]; b /
r
��0
�s
e��=[4�0];

the bunch length decreases �(�) / e��=[4�0], while the bunch momentum spread increases
Æ(�) / e�=[4�0] during these variations of the synchrotron tune. All these equations hold
until ��s(�)� 1. It means that such a bunching should be not longer than during

�� < �0 ln

�
1

��s

�
: (E.27)

Correspondingly, the asymptotic regions ku = 2�0�s(�)� 1 are available, if the bunching
occurs slowly, so that �0 is large enough.
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