19,742 research outputs found
Duties of Members, Directors, and Managers of Cooperative Associations
Exact date of bulletin unknown.PDF pages: 1
An \emph{ab initio} method for locating characteristic potential energy minima of liquids
It is possible in principle to probe the many--atom potential surface using
density functional theory (DFT). This will allow us to apply DFT to the
Hamiltonian formulation of atomic motion in monatomic liquids [\textit{Phys.
Rev. E} {\bf 56}, 4179 (1997)]. For a monatomic system, analysis of the
potential surface is facilitated by the random and symmetric classification of
potential energy valleys. Since the random valleys are numerically dominant and
uniform in their macroscopic potential properties, only a few quenches are
necessary to establish these properties. Here we describe an efficient
technique for doing this. Quenches are done from easily generated "stochastic"
configurations, in which the nuclei are distributed uniformly within a
constraint limiting the closeness of approach. For metallic Na with atomic pair
potential interactions, it is shown that quenches from stochastic
configurations and quenches from equilibrium liquid Molecular Dynamics (MD)
configurations produce statistically identical distributions of the structural
potential energy. Again for metallic Na, it is shown that DFT quenches from
stochastic configurations provide the parameters which calibrate the
Hamiltonian. A statistical mechanical analysis shows how the underlying
potential properties can be extracted from the distributions found in quenches
from stochastic configurations
Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb
We calculate the adiabatic contributions to the free energy due to the
electron--phonon interaction at intermediate temperatures, for the elemental metals Na, K, Al, and Pb. Using our
previously published results for the nonadiabatic contributions we show that
the adiabatic contribution, which is proportional to at low
temperatures and goes as at high temperatures, dominates the
nonadiabatic contribution for temperatures above a cross--over temperature,
, which is between 0.5 and 0.8 , where is the melting
temperature of the metal. The nonadiabatic contribution falls as for
temperatures roughly above the average phonon frequency.Comment: Updated versio
Observation of Single Transits in Supercooled Monatomic Liquids
A transit is the motion of a system from one many-particle potential energy
valley to another. We report the observation of transits in molecular dynamics
(MD) calculations of supercooled liquid argon and sodium. Each transit is a
correlated simultaneous shift in the equilibrium positions of a small local
group of particles, as revealed in the fluctuating graphs of the particle
coordinates versus time. This is the first reported direct observation of
transit motion in a monatomic liquid in thermal equilibrium. We found transits
involving 2 to 11 particles, having mean shift in equilibrium position on the
order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest
neighbor distance. The time it takes for a transit to occur is approximately
one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure
Fast track children's hearing pilot: final report of the evaluation of the pilot
This report presents key findings of the evaluation of the Fast Track children’s hearings pilot in Scotland1. The research was undertaken by staff at the Universities of Glasgow, Stirling and Strathclyde between February 2003 and January 2005
Nucleon, and excited states in lattice QCD
The energies of the excited states of the Nucleon, and are
computed in lattice QCD, using two light quarks and one strange quark on
anisotropic lattices. The calculation is performed at three values of the light
quark mass, corresponding to pion masses = 392(4), 438(3) and 521(3)
MeV. We employ the variational method with a large basis of interpolating
operators enabling six energies in each irreducible representation of the
lattice to be distinguished clearly. We compare our calculation with the
low-lying experimental spectrum, with which we find reasonable agreement in the
pattern of states. The need to include operators that couple to the expected
multi-hadron states in the spectrum is clearly identified.Comment: Revised for publication. References added, Table VI expanded to add
strange baryon multiparticle thresholds and multiparticle thresholds added to
Figs. 4, 5 and 6. 15 pages, 6 figure
- …