336 research outputs found

    Quantum oscillations in graphene in the presence of disorder and interactions

    Full text link
    Quantum oscillations in graphene is discussed. The effect of interactions are addressed by Kohn's theorem regarding de Haas-van Alphen oscillations, which states that electron-electron interactions cannot affect the oscillation frequencies as long as disorder is neglected and the system is sufficiently screened, which should be valid for chemical potentials not very close to the Dirac point. We determine the positions of Landau levels in the presence of potential disorder from exact transfer matrix and finite size diagonalization calculations. The positions are shown to be unshifted even for moderate disorder; stronger disorder, can, however, lead to shifts, but this also appears minimal even for disorder width as large as one-half of the bare hopping matrix element on the graphene lattice. Shubnikov-de Haas oscillations of the conductivity are calculated analytically within a self-consistent Born approximation of impurity scattering. The oscillatory part of the conductivity follows the widely invoked Lifshitz-Kosevich form when certain mass and frequency parameters are properly interpreted.Comment: Appendix A was removed, as the content of it is already contained in Ref. 17. Thanks to M. A. H. Vozmedian

    The Localization Length of Stationary States in the Nonlinear Schreodinger Equation

    Full text link
    For the nonlinear Schreodinger equation (NLSE), in presence of disorder, exponentially localized stationary states are found. In the present Letter it is demonstrated analytically that the localization length is typically independent of the strength of the nonlinearity and is identical to the one found for the corresponding linear equation. The analysis makes use of the correspondence between the stationary NLSE and the Langevin equation as well as of the resulting Fokker-Planck equation. The calculations are performed for the ``white noise'' random potential and an exact expression for the exponential growth of the eigenstates is obtained analytically. It is argued that the main conclusions are robust

    Band-Contact Lines in Electron Energy Spectrum of Graphite

    Full text link
    We discuss the known experimental data on the phase of the de Haas -van Alphen oscillations in graphite. These data can be understood if one takes into account that four band-contact lines exist near the HKH edge of the Brillouin zone of graphite.Comment: 5 pages, 2 fifures. To appear in Physical Review B (B15

    Underbarrier nucleation kinetics in a metastable quantum liquid near the spinodal

    Full text link
    We develop a theory in order to describe the effect of relaxation in a condensed medium upon the quantum decay of a metastable liquid near the spinodal at low temperatures. We find that both the regime and the rate of quantum nucleation strongly depend on the relaxation time and its temperature behavior. The quantum nucleation rate slows down with the decrease of the relaxation time. We also discuss the low temperature experiments on cavitation in normal 3^3He and superfluid 4^4He at negative pressures. It is the sharp distinctions in the high frequency sound mode and in the temperature behavior of the relaxation time that make the quantum cavitation kinetics in 3^3He and 4^4He completely different in kind.Comment: 10 pages, 2 figure

    Conversion of hole states by acoustic solitons

    Full text link
    The hole states in the valence band of a large class of semiconductors are degenerate in the projections of angular momentum. Here we show that the switching of a hole between the states can efficiently be realized by acoustic solitons. The microscopic mechanism of such a state conversion is related to the valence band splitting by local elastic strain. The conversion is studied here for heavy holes localized at shallow and deep acceptors in silicon quantum wells.Comment: 4 pages, 2 figure

    Non-monotonic magnetoresistance of two-dimensional electron systems in the ballistic regime

    Full text link
    We report experimental observations of a novel magnetoresistance (MR) behavior of two-dimensional electron systems in perpendicular magnetic field in the ballistic regime, for k_BT\tau/\hbar>1. The MR grows with field and exhibits a maximum at fields B>1/\mu, where \mu is the electron mobility. As temperature increases the magnitude of the maximum grows and its position moves to higher fields. This effect is universal: it is observed in various Si- and GaAs- based two-dimensional electron systems. We compared our data with recent theory based on the Kohn anomaly modification in magnetic field, and found qualitative similarities and discrepancies.Comment: 4 pages 3 figure

    Negative Echo in the Density Evolution of Ultracold Fermionic Gases

    Full text link
    We predict a nonequilibrium critical phenomenon in the space-time density evolution of a fermionic gas above the temperature of transition into the superfluid phase. On the BCS side of the BEC-BCS crossover, the evolution of a localized density disturbance exhibits a negative echo at the point of the initial inhomogeneity. Approaching the BEC side, this effect competes with the slow spreading of the density of bosonic molecules. However, even here the echo dominates for large enough times. This effect may be used as an experimental tool to locate the position of the transition.Comment: 4 pages, 2 figure

    Smoothing effect and delocalization of interacting Bose-Einstein condensates in random potentials

    Full text link
    We theoretically investigate the physics of interacting Bose-Einstein condensates at equilibrium in a weak (possibly random) potential. We develop a perturbation approach to derive the condensate wavefunction for an amplitude of the potential smaller than the chemical potential of the condensate and for an arbitrary spatial variation scale of the potential. Applying this theory to disordered potentials, we find in particular that, if the healing length is smaller than the correlation length of the disorder, the condensate assumes a delocalized Thomas-Fermi profile. In the opposite situation where the correlation length is smaller than the healing length, we show that the random potential can be significantly smoothed and, in the meanfield regime, the condensate wavefunction can remain delocalized, even for very small correlation lengths of the disorder.Comment: The word "screening" has been changed to "smoothing" to avoid confusions with other effects discussed in the literature. This does not affect the content of paper, nor the results, nor the physical discussio

    Conductance of a tunnel point-contact of noble metals in the presence of a single defect

    Get PDF
    In paper [1] (Avotina et al. Phys. Rev. B,74, 085411 (2006)) the effect of Fermi surface anisotropy to the conductance of a tunnel point contact, in the vicinity of which a single point-like defect is situated, has been investigated theoretically. The oscillatory dependence of the conductance on the distance between the contact and the defect has been found for a general Fermi surface geometry. In this paper we apply the method developed in [1] to the calculation of the conductance of noble metal contacts. An original algorithm, which enables the computation of the conductance for any parametrically given Fermi surface, is proposed. On this basis a pattern of the conductance oscillations, which can be observed by the method of scanning tunneling microscopy, is obtained for different orientations of the surface for the noble metals.Comment: 8 pages, 5 figure

    Linearized Kompaneetz equation as a relativistic diffusion

    Full text link
    We show that Kompaneetz equation describing photon diffusion in an environment of an electron gas, when linearized around its equilibrium distribution, coincides with the relativistic diffusion discussed in recent publications. The model of the relativistic diffusion is related to soluble models of imaginary time quantum mechanics. We suggest some non-linear generalizations of the relativistic diffusion equation and their astrophysical applications (in particular to the Sunyaev-Zeldovich effect).Comment: 12 page
    • ā€¦
    corecore