1,163 research outputs found

    Bound states due to a strong δ\delta interaction supported by a curved surface

    Full text link
    We study the Schr\"odinger operator Δαδ(xΓ)-\Delta -\alpha \delta (x-\Gamma) in L2(R3)L^2(\R^3) with a δ\delta interaction supported by an infinite non-planar surface Γ\Gamma which is smooth, admits a global normal parameterization with a uniformly elliptic metric. We show that if Γ\Gamma is asymptotically planar in a suitable sense and α>0\alpha>0 is sufficiently large this operator has a non-empty discrete spectrum and derive an asymptotic expansion of the eigenvalues in terms of a ``two-dimensional'' comparison operator determined by the geometry of the surface Γ\Gamma. [A revised version, to appear in J. Phys. A]Comment: LaTeX 2e, 21 page

    Schrödinger operators with δ and δ′-potentials supported on hypersurfaces

    Get PDF
    Self-adjoint Schrödinger operators with δ and δ′-potentials supported on a smooth compact hypersurface are defined explicitly via boundary conditions. The spectral properties of these operators are investigated, regularity results on the functions in their domains are obtained, and analogues of the Birman–Schwinger principle and a variant of Krein’s formula are shown. Furthermore, Schatten–von Neumann type estimates for the differences of the powers of the resolvents of the Schrödinger operators with δ and δ′-potentials, and the Schrödinger operator without a singular interaction are proved. An immediate consequence of these estimates is the existence and completeness of the wave operators of the corresponding scattering systems, as well as the unitary equivalence of the absolutely continuous parts of the singularly perturbed and unperturbed Schrödinger operators. In the proofs of our main theorems we make use of abstract methods from extension theory of symmetric operators, some algebraic considerations and results on elliptic regularity

    Lieb-Thirring inequalities for geometrically induced bound states

    Full text link
    We prove new inequalities of the Lieb-Thirring type on the eigenvalues of Schr\"odinger operators in wave guides with local perturbations. The estimates are optimal in the weak-coupling case. To illustrate their applications, we consider, in particular, a straight strip and a straight circular tube with either mixed boundary conditions or boundary deformations.Comment: LaTeX2e, 14 page

    Weakly coupled states on branching graphs

    Full text link
    We consider a Schr\"odinger particle on a graph consisting of N\,N\, links joined at a single point. Each link supports a real locally integrable potential Vj\,V_j\,; the self--adjointness is ensured by the δ\,\delta\, type boundary condition at the vertex. If all the links are semiinfinite and ideally coupled, the potential decays as x1ϵ\,x^{-1-\epsilon} along each of them, is non--repulsive in the mean and weak enough, the corresponding Schr\"odinger operator has a single negative eigenvalue; we find its asymptotic behavior. We also derive a bound on the number of bound states and explain how the δ\,\delta\, coupling constant may be interpreted in terms of a family of squeezed potentials.Comment: LaTeX file, 7 pages, no figure

    Sigmund Exner's (1887) einige beobachtungen über bewegungsnachbilder (some observations on movement aftereffects):an illustrated translation with commentary

    Get PDF
    In his original contribution, Exner’s principal concern was a comparison between the properties of different aftereffects, and particularly to determine whether aftereffects of motion were similar to those of color and whether they could be encompassed within a unified physiological framework. Despite the fact that he was unable to answer his main question, there are some excellent—so far unknown—contributions in Exner’s paper. For example, he describes observations that can be related to binocular interaction, not only in motion aftereffects but also in rivalry. To the best of our knowledge, Exner provides the first description of binocular rivalry induced by differently moving patterns in each eye, for motion as well as for their aftereffects. Moreover, apart from several known, but beautifully addressed, phenomena he makes a clear distinction between motion in depth based on stimulus properties and motion in depth based on the interpretation of motion. That is, the experience of movement, as distinct from the perception of movement. The experience, unlike the perception, did not result in a motion aftereffect in depth

    Avoided crossings in mesoscopic systems: electron propagation on a non-uniform magnetic cylinder

    Full text link
    We consider an electron constrained to move on a surface with revolution symmetry in the presence of a constant magnetic field BB parallel to the surface axis. Depending on BB and the surface geometry the transverse part of the spectrum typically exhibits many crossings which change to avoided crossings if a weak symmetry breaking interaction is introduced. We study the effect of such perturbations on the quantum propagation. This problem admits a natural reformulation to which tools from molecular dynamics can be applied. In turn, this leads to the study of a perturbation theory for the time dependent Born-Oppenheimer approximation

    Two-component model of a spin-polarized transport

    Full text link
    Effect of the spin-involved interaction of electrons with impurity atoms or defects to the transport properties of a two-dimensional electron gas is described by using a simplifying two-component model. Components representing spin-up and spin-down states are supposed to be coupled at a discrete set of points within a conduction channel. The used limit of the short-range interaction allows to solve the relevant scattering problem exactly. By varying the model parameters different transport regimes of two-terminal devices with ferromagnetic contacts can be described. In a quasi-ballistic regime the resulting difference between conductances for the parallel and antiparallel orientation of the contact magnetization changes its sign as a function of the length of the conduction channel if appropriate model parameters are chosen. The effect is in agreement with recent experimental observations.Comment: 4 RevTeX pages with 4 figure

    Convergence of resonances on thin branched quantum wave guides

    Full text link
    We prove an abstract criterion stating resolvent convergence in the case of operators acting in different Hilbert spaces. This result is then applied to the case of Laplacians on a family X_\eps of branched quantum waveguides. Combining it with an exterior complex scaling we show, in particular, that the resonances on X_\eps approximate those of the Laplacian with ``free'' boundary conditions on X0X_0, the skeleton graph of X_\eps.Comment: 48 pages, 1 figur

    A Hardy inequality in twisted waveguides

    Full text link
    We show that twisting of an infinite straight three-dimensional tube with non-circular cross-section gives rise to a Hardy-type inequality for the associated Dirichlet Laplacian. As an application we prove certain stability of the spectrum of the Dirichlet Laplacian in locally and mildly bent tubes. Namely, it is known that any local bending, no matter how small, generates eigenvalues below the essential spectrum of the Laplacian in the tubes with arbitrary cross-sections rotated along a reference curve in an appropriate way. In the present paper we show that for any other rotation some critical strength of the bending is needed in order to induce a non-empty discrete spectrum.Comment: LaTeX, 20 page

    Well-Posedness and Symmetries of Strongly Coupled Network Equations

    Full text link
    We consider a diffusion process on the edges of a finite network and allow for feedback effects between different, possibly non-adjacent edges. This generalizes the setting that is common in the literature, where the only considered interactions take place at the boundary, i. e., in the nodes of the network. We discuss well-posedness of the associated initial value problem as well as contractivity and positivity properties of its solutions. Finally, we discuss qualitative properties that can be formulated in terms of invariance of linear subspaces of the state space, i. e., of symmetries of the associated physical system. Applications to a neurobiological model as well as to a system of linear Schroedinger equations on a quantum graph are discussed.Comment: 25 pages. Corrected typos and minor change
    corecore