2,574 research outputs found

    High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots

    Get PDF
    It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast to optical methods, they allow the identification of the dopants and provide information about the spatial distribution of the electronic wave function. This latter aspect is particularly attractive because it allows for a quantitative measurement of the effect of confinement on the shape and properties of the wave function. In this contribution EPR and ENDOR results are presented on doped ZnO QDs. Shallow donors (SDs), related to interstitial Li and Na and substitutional Al atoms, have been identified in this material by pulsed high-frequency EPR and ENDOR spectroscopy. The shallow character of the wave function of the donors is evidenced by the multitude of ENDOR transitions of the 67Zn nuclear spins and by the hyperfine interaction of the 7Li, 23Na and 27Al nuclear spins that are much smaller than for atomic lithium, sodium and aluminium. The EPR signal of an exchange-coupled pair consisting of a shallow donor and a deep Na-related acceptor has been identified in ZnO nanocrystals with radii smaller than 1.5 nm. From ENDOR experiments it is concluded that the deep Na-related acceptor is located at the interface of the ZnO core and the Zn(OH)2 capping layer, while the shallow donor is in the ZnO core. The spatial distribution of the electronic wave function of a shallow donor in ZnO semiconductor QDs has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine interactions as monitored by ENDOR spectroscopy quantitatively reveal the transition from semiconductor to molecular properties upon reduction of the size of the nanoparticles. In addition, the effect of confinement on the g-factor of SDs in ZnO as well as in CdS QDs is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the 67Zn nuclear spins in the core of ZnO QDs and of the 1H nuclear spins in the Zn(OH)2 capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques

    Fitofármaco, fitoterápico, plantas medicinais: o reducionismo e a complexidade na produção do conhecimento científico

    Full text link
    Esse estudo tem por objetivo discutir como a forma de produção do conhecimento científico pode determinar a maneira do homem conhecer, lidar e apropriar-se da natureza, especificamente, em relação ao conhecimento associado ao estudo das plantas medicinais e seus derivados. Visando fornecer subsídios para a compreensão do que norteia os pesquisadores que buscam o entendimento sobre as plantas medicinais a partir de uma abordagem complexa, algumas questões de caráter epistemológico são formuladas e discutidas à luz dos referenciais teóricos construídos por Morin6 e Latour7

    Methods for removal of unwanted signals from gravity time-series : comparison using linear techniques complemented with analysis of system dynamics

    Get PDF
    We thanks the participants of the 35th General Assembly of the European Seismological Commission for comments on preliminary results. The authors are grateful to all IGETS contributors, particularly to the station operators and to ISDC/GFZ-Potsdam for providing the original gravity data used in this study. We also thank the developers of ATLANTIDA3.1 and UTide. Part of this work was performed using the ICSMB High Performance Computing Cluster, University of Aberdeen. We also thanks M. Thiel and A. Moura for reviewing a preliminary version and making comments on the methods section and M.A. Ara´ujo for comments on Lyapunov exponents. Funding: A. Valencio is supported by CNPq, Brazil [206246/2014-5]; and received a travel grant from the School of Natural and Computing Sciences, University of Aberdeen [PO2073498], for a presentation including preliminary results.Peer reviewedPostprintPublisher PD

    Liquid Structure of a Water-in-Salt Electrolyte with a Remarkably Asymmetric Anion

    Get PDF
    Water-in-salt systems, i.e., super-concentrated aqueous electrolytes, such as lithium bis(trifluoromethanesulfonyl)imide (21 mol/kgwater), have been recently discovered to exhibit unexpectedly large electrochemical windows and high lithium transference numbers, thus paving the way to safe and sustainable charge storage devices. The peculiar transport features in these electrolytes are influenced by their intrinsically nanoseparated morphology, stemming from the anion hydrophobic nature and manifesting as nanosegregation between anions and water domains. The underlying mechanism behind this structure-dynamics correlation is, however, still a matter of strong debate. Here, we enhance the apolar nature of the anions, exploring the properties of the aqueous electrolytes of lithium salts with a strongly asymmetric anion, namely, (trifluoromethylsulfonyl)(nonafluorobutylsulfonyl) imide. Using a synergy of experimental and computational tools, we detect a remarkable level of structural heterogeneity at a mesoscopic level between anion-rich and water-rich domains. Such a ubiquitous sponge-like, bicontinuous morphology develops across the whole concentration range, evolving from large fluorinated globules at high dilution to a percolating fluorous matrix intercalated by water nanowires at super-concentrated regimes. Even at extremely concentrated conditions, a large population of fully hydrated lithium ions, with no anion coordination, is detected. One can then derive that the concomitant coexistence of (i) a mesoscopically segregated structure and (ii) fully hydrated lithium clusters disentangled from anion coordination enables the peculiar lithium diffusion features that characterize water-in-salt systems

    Rainfall Prediction in the State of Paraíba, Northeastern Brazil Using Generalized Additive Models

    Get PDF
    The state of Paraíba is part of the semi-arid region of Brazil, where severe droughts have occurred in recent years, resulting in significant socio-economic losses associated with climate variability. Thus, understanding to what extent precipitation can be influenced by sea surface temperature (SST) patterns in the tropical region can help, along with a monitoring system, to set up an early warning system, the first pillar in drought management. In this study, Generalized Additive Models for Location, Scale and Shape (GAMLSS) were used to filter climatic indices with higher predictive efficiency and, as a result, to perform rainfall predictions. The results show the persistent influence of tropical SST patterns in Paraíba rainfall, the tropical Atlantic Ocean impacting the rainfall distribution more effectively than the tropical Pacific Ocean. The GAMLSS model showed predictive capability during summer and southern autumn in Paraíba, highlighting the JFM (January, February and March), FMA (February, March and April), MAM (March, April and May), and AMJ (April, May and June) trimesters as those with the highest predictive potential. The methodology demonstrates the ability to be integrated with regional forecasting models (ensemble). Such information has the potential to inform decisions in multiple sectors, such as agriculture and water resources, aiming at the sustainable management of water resources and resilience to climate risk

    The step of incorporation of Bacillus coagulans GBI-30 6086 into “requeijão cremoso” processed cheese does not affect metabolic homeostasis of rats

    Get PDF
    Dairy product consumption is a common habit in Brazil. These products present a good matrix for probiotic incorporation. Thus, in this study the feasibility of producing a probiotic "requeijao cremoso" incorporated with Bacillus coagulans GBI-30 6086 in three different steps and its metabolic effect in an animal model for 2 weeks has been evaluated. Wistar adult health rats were randomized into one to five groups (n = 8 for each group): Control (C); "requeijao cremoso" without probiotic (RC); probiotic inoculated in the milk before pasteurization at 65 degrees C/30 min (RPP); "requeijao cremoso" inoculated before the fusion step and consequently exposed to 90 degrees C/5 min (RPF); and "requeijao cremoso" inoculated after fusion step, i.e., once the product temperature reached 50 degrees C (RPAF). At the end of treatment, analysis of molecular markers of proteins of stress and antioxidant system, HSP 25, 60, 70 and 90, SOD and catalase were performed in the animals' muscles by Western Blot technique. The HSP25, HSP90 and catalase levels of C, RPP, RPF, and RPAF were similar, indicating that the homeostasis remained unchanged. The incorporation of B. coagulans GBI-30 6086 in the "requeijao cremoso" was shown to be stable and the microorganism remained viable in all steps tested. The incorporation of the probiotic strain in the fusion stage facilitated the technological process, since it allowed a better homogenization of the product and did not affect the maintenance of the metabolic homeostasis of rats10CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informação302763/2014-7; 305804/2017-013/21544-9; 18/24540-8; 2019/21188-
    corecore