20,378 research outputs found

    NEW DIMENSIONS AND POTENTIALS FOR AID-UNIVERSITY COOPERATION

    Get PDF
    Research and Development/Tech Change/Emerging Technologies,

    Effect of blade geometry on the aerodynamic loads produced by vertical-axis wind turbines

    Get PDF
    Accurate aerodynamic modelling of vertical-axis wind turbines poses a significant challenge. The rotation of the turbine induces large variations in the angle of attack of its blades that can manifest as dynamic stall. In addition, interactions between the blades of the turbine and the wake that they produce can result in impulsive changes to the aerodynamic loading. The Vorticity Transport Model has been used to simulate the aerodynamic performance and wake dynamics of three different vertical-axis wind turbine configurations. It is known that vertical-axis turbines with either straight or curved blades deliver torque to their shaft that fluctuates at the blade passage frequency of the rotor. In contrast, a turbine with helically twisted blades delivers a relatively steady torque to the shaft. In this article, the interactions between helically twisted blades and the vortices within their wake are shown to result in localized perturbations to the aerodynamic loading on the rotor that can disrupt the otherwise relatively smooth power output that is predicted by simplistic aerodynamic tools that do not model the wake to sufficient fidelity. Furthermore, vertical-axis wind turbines with curved blades are shown to be somewhat more susceptible to local dynamic stall than turbines with straight blades

    Geometric approach to Fletcher's ideal penalty function

    Get PDF
    Original article can be found at: www.springerlink.com Copyright Springer. [Originally produced as UH Technical Report 280, 1993]In this note, we derive a geometric formulation of an ideal penalty function for equality constrained problems. This differentiable penalty function requires no parameter estimation or adjustment, has numerical conditioning similar to that of the target function from which it is constructed, and also has the desirable property that the strict second-order constrained minima of the target function are precisely those strict second-order unconstrained minima of the penalty function which satisfy the constraints. Such a penalty function can be used to establish termination properties for algorithms which avoid ill-conditioned steps. Numerical values for the penalty function and its derivatives can be calculated efficiently using automatic differentiation techniques.Peer reviewe

    Analytical Investigation of the Reentry Behavior of the ''flying Wind Tunnel'' Test Vehicle, with Some Effects of Threshold and Torque Level of a Roll-rate Control System

    Get PDF
    Analytical investigation of reentry behavior of flying wind tunnel test vehicle with some effects of threshold and torque level of roll-rate control syste

    Ecology and management of vendace spawning grounds. Final Report

    Get PDF

    Geometry Optimization of Crystals by the Quasi-Independent Curvilinear Coordinate Approximation

    Full text link
    The quasi-independent curvilinear coordinate approximation (QUICCA) method [K. N\'emeth and M. Challacombe, J. Chem. Phys. {\bf 121}, 2877, (2004)] is extended to the optimization of crystal structures. We demonstrate that QUICCA is valid under periodic boundary conditions, enabling simultaneous relaxation of the lattice and atomic coordinates, as illustrated by tight optimization of polyethylene, hexagonal boron-nitride, a (10,0) carbon-nanotube, hexagonal ice, quartz and sulfur at the Γ\Gamma-point RPBE/STO-3G level of theory.Comment: Submitted to Journal of Chemical Physics on 7/7/0

    Field-guided proton acceleration at reconnecting X-points in flares

    Get PDF
    An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to gamma-ray-emitting energies (>1MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.Comment: 14 pages, 4 figures, accepted for publication in Solar Physic
    • 

    corecore