Open Research Online

The Open University's repository of research publications and other research outputs

Aspects of equivalence relations in the school curriculum and the development of the concept in young children

Thesis

How to cite:
Fletcher, B (1978). Aspects of equivalence relations in the school curriculum and the development of the concept in young children. MPhil thesis The Open University.

For guidance on citations see FAQs
© 1977 The Author
Version: Version of Record
Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.21954/ou.ro.0000f74b

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.

ASPECTS OF EQUIVALENCE RELATIONS IN THE SCHOOL CURRICULUU AND THE DEVELOPMENT OF THE CONCEPT IN YOUNG CHILDREN.

BY

E. Fletcher, B.Sc., B.A.

Thesis submitted to the Open University for the degree of Master of Philosophy in Methematics Education, December 1977.

Date of submission: 1.12.77
Date of award: $11-7-1978$

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 27777448
Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106-1346

ACKNONLEDGEMENTS

The author makes grateful acknowledgement to D.E. Mansfield for advice and encouragement, to the staff and pupils at Mount Pleasant Primary School, Darlington, at which a small pilot study was undertaken, to Miss S. Gracey, HMI for profitable discussions concerning this pilot, to Dr H.O. Pollak for providing access to American sources, and to Mrs J. Atkinson for highly competent typing.

My family deserve a very special thank you for their support, advice and encouragement; this applies particularly to my husband, Trevor, to whom this work is dedicated.

This thesis considers sone especte of equivalence relations, especially in eress cutside mathematies and in the development of children's thinking.

The ain of Section is to chou that equivelence classes (and by implication equivalence relatione) are an essential mode of thinking for adult Engissh speakers in a varisty of necivitios.

As children have theix oun patterns of thinking which are developing tonard adult form. Section 2 is devoted to establishing a franevork within which observotions about the development of the concept of equivalence relation cen be orgenised.

The rolovant factors of Piagot'o work are taken as the etoring point. These are roviowed alongeide nore recent hmerican studies. Some recont reformulations of Piaget's thoory of groupinge by Germen uriters are also considered.

Thie revion icentifies difficultios arieing from
(a) diversity of intempretation of (i) Piaget's work (ii) terninology used.
(b) gape between the psychological models and the behavioural countorparts which they vere designed to repsesent.
(c) lack of agreed critorion for concept attainment. Pointo aricing from (a) and (c) have been considored in greater cetail in tho context of

- the identification and modification of pointo of neaknoss in the hypothesis that soriction implice transitivity,
- an attompt to apecify the charaetoristice of a test of conecrvation of a quantitative relation.

The reviev also ghows gaps in the resecrch, notabiy, in the study of the gronth of the underetanding of oymotric relations; proposals for further tests to clerify the stages in the development of the concopt of symmetry ere put forward. The feasibility of these tests has been studied in the classroom.

CONTENTS

Outline for Section 1.
Dutline for Section 2.
Section 1
1.1. The rale of the concept of equivalence relation in mathematics. Page 1
1.2. The role of the concept of equivalence relation in subject areas other than mathematics. Page 3
1.3. Definitions and resules. Page 18
Section 2
2.0. Aim of the section. Page 25
2.1. The contribution of Piaget. Page 25
2.2. Piaget's theory of groupings. Page 26
2.3. Wittmann's and Steiner's reformulations. Page 33
2.4. The relevance of the experiments associatedwith groupinge V and VI.Page 36
2.5. Grouping V.
(i) Piaget's traneitivity studies Page 39
(ii) The extensions of Piagetian-typetransitivity experiments:
(a) Recent research in the U.S.A. Page 47
(b) Commentaries based on Piaget's work. Page 51
(iii) The contribution of the studies byD.C. Johnson, Steffe and Carey, andM.L. Johnson.Page 55(iv) The identification and modification ofpoints of weakness in the hypothesis:seriation implies transitivity.Page 62

2.6. Grouping VI

(i) Piaget's symmetry studies. Page 66
(ii) Confirmation of these results by Danziger. Page 73
(iii) Critique of the above studies. Page 74
(iv) Proposals for further tests - toclarify the atages in the developmentof symmetry.Page 79
2.7. Reflexivity
(i) Piagetian-type reflexivity check-ups. Page 69
(ii) Critique of the above checkwupe. Page 91(iii) Recent American studies.Page 93
2.8. Relationshipe between the use of properties of relations
(i) The contributian of the studies by Steffe and Carey and D.T. Dwens. Page 100(ii) Various interpretations and uses ofthe word "conservation".Page 107
(iii) An attempt to specify the characteristics of a test ofconservation of a quantitative relationbesed on Steffe and Carey'sinterpretation.Page 112
(iv) An analysis of points requiringconeideration if the definition ofconservation of identity is to bederived from the general case byputting $x=y$.Page 114
(v) An attempt to clarify the main issueraised in Section 2.6 (i).Page 118
2.9. Partition - its roie in the development of the concept of equivalence relation. Page 119
2.10 Concluding remarks
Page 129

Reforences

Primary references Page 134
Secondary references
Page 138

Appendices

Appendix 1 Page 143
Appondix 2a Page 145
Appendix 2b Page 147
Appendix $2 \mathrm{c} \quad$ Page 148
Appendix 2d Page 155
Appendix 2 e Page 167
Appendix 2f Page 169
Out line for Section 1

1.2. The role of the concept of

1.2. $\frac{\text { equivalence relation in sub ject: }}{\text { ation }}$
areas other than mathematics
Justification of the statement.
traditional 0-level Wathomatics
Syllabus which are underpinned by an
equivalence relation and which
present conceptual and manipulational
difficulties for pupils, e.g.
fractions and integers.
1.1. The role of the concept of
$\frac{\text { equivalence relation in }}{\text { mathematics }}$

Discussion of topics from a			
'traditional' 0-level Hathematics			
Syliabus which are undexpinned by an			
oquivalence relation and which			
present conceptual and manipulational			
difficulties for pupils, e.g.	The improvement of teaching in these long-standing areas of difficulty as an objective for introducing equivalence relations into mathematics curricula.	\quad	The identification of other traditional
:---			
curricular topics which could be assisted			

\rightarrow Equivalence classes seen as an
escential mode of thinking for adult
English speakers.
Comparison with children's patterns
of thinking.
The rationale underlying Section 2 .
1.3. Definitions and results
A list of definitions and results on
which the discussion in Section 2 is
based.

Outline for Section 1 (contd)
Outline for Section 2
2.0. Ain of the section: to establish a framework within which observations about the development of the concept of equivalence relation can be organized. 2.1. The contribution of Piaget
The relevant factors of Piaget's work are the obvious starting point as the work of the Ceneva school is seen as providing a framework for
(1) explaining how mental operations
basic to mathenatical thought develop,
(2) identifying structural
The importance of (2) to Piaget himself,
particularly the theory of groupings.

2.2. Piaget's theory of groupings

The relevance of the theory of groupings to the diecussion because of the incorporation of the properties of transitivity, symmetry and reflexivity into these structures. Consequences:
(i) identification of 9 distinct group-
ings as models of cognition in the
concrete operational subperiod.
(ii) identification of the common and a lattice.
The unsatisfactory mathematical
formulation arising from (ii).
The lack of clarity in Piaget's
of the theory of groupings with
particular reference to

- the resulting risk of circularity, which
seens to be regarded as unavoidable.
Outline for Section 2 (contd)

Outline for Section 2 (contd)
\square The need to find answers to the
questions

1. If we consider transitivity with
different physical quantities
(e.g.length, volume, wight), is
it the case that these are always
acquired in some specific order
substantially independent of the
experience/teaching given or can
the order be affected by the
experience/teaching given?
experience/teaching given?
2. If the concept of transitivity is
broken down into components, is it
the case that in every physical
context these components are acquired in an invariant order?
in order to achieve our original goal
of building an appropriate framework. \rightarrow The emphasis of Piaget's work relating
to Question 2 above, not Question 1.
(ii) The extensions of Piagetian-type
$\xrightarrow{\text { cransitivity experimenta. }} \rightarrow$
(a) Recent research in the U.S.A.
e.g. the investigation by D.T. Owens.

Use of the conclusion of Owen's study
that the ability to use the transitive
necessarily precede the ability to use
the transitive property of length
relations, to contrast with statements
to be found in many conmentaries of the
1960 s .
(b) Con
(b) Commentaries based on Piaget's work. \longleftarrow
Qutline for Section 2 (contd)
Outcomes:
$\rightarrow \frac{\text { (iv) The identification and }}{\frac{\text { modification of points of }}{\text { weakness in the hypothesis: }}} \frac{\text { seriation implies transitivity }}{}$
The core property for grouping V is
restricted-transitivity not
transitivity.
The suggestion that stage three
seriation behaviour is the actual
behavioural counterpart of
restricted-transitivity.

Outline for Section 2 (contd)

Outline for Section 2 (contd)		hypothetical family to his own family, which implies three stages in the child's ability to handle restricted-transitivity with respect to "is the brother of"
\longrightarrow The question of the suitability of relations such as "is the brother of" for studying the child's capacity to grasp symmetry. (iv) Proposals for further tests to clarify the stages in the development of symmetry	\square The need to investigate hypotheses such as "the child is able to see his own fanily from the point of view of his own siblings and to look at himself from their point of view $==\Rightarrow$ the child is able to use restricted-transitivity and symmetry as appropriate with confidence", before we can complete the evidence on the order of acquisition of the features associated with the colloquial use of the word 'brother'.	-The possibility of a parallel set of three stages in the child's capacity to grasp symetry with respect to "is the brother of".
	2.7. Reflexivity (i) Piagetian-type reflexivity check-ups	
	The check-ups based on (a) the pullover/skirt game. (b) the first-name/surname game. (ii) Critique of the above chock-ups	
	(a) The onission of discussion of the psychogenetically subsequent nature of reflexivity.	Consideration of the possibility of partitioning a set with something less than an equivalence relation.
	\longrightarrow (b) The lack of explicit formalization of the relation under consideration. (c) The lack of identification of the	

Outline for Section 2 (contd)
(iii) An attempt to specify the
$\frac{\text { characteristics of a test of }}{\text { conservation of a }}$
$\frac{\text { quantitative relation based }}{\text { on Steffe and Carey's }}$
interpretation

An attempt at identification of sources of error. confusion by identifying the following (a) failure to recognize that the antireflexivity imply at least two levels of application.
(b) the application of quantitypreserving transformation(s) is
not a design-feature for a test of reflexivity or antireflexivity,
whereas the introduction of whereas the introduction of
quantity formation(s) is necessary to test conservation.
 test of the "reflexive and antireflexive properties".
(iv) An analysis of points requiring
of conservation of identity is to
be derived from the general case
by putting $x=y_{0}$
similarities in interpretation and use of the word "conservation" by D.T. Owens and Steffe and Carey.
Insufficient evidence on which to base Owen's interpretation. Hence, confirmation or rejection of the hypothesis
"conservation of a set of quantitative
relations is a necessary condition for restricted-transitivity of the same set of quantitative relations",
fails because of lack of clarity in
interpretation and use of the terminology.
2.9. Partition - its role in the
\rightarrow M.L. Johnson's sumnary of the main the findings of a nubber of studies on classificatory behaviour of young children.
The concern of M.L. Johnson over the lack of information on the relationship which mey exist between the child's
knowledge of the mathenatical.
properties of an equivalence relation and his classification skills based on that relation.

The subsequent inclusion of the

objective
"to determine if the subject's ability
to use the transitive property of the
equivalence relation "same length as"

Outline for Section 2 (contd)		was related to his ability to classify on the basis of this relation" in the study undertaken by M.L. Johneon.
\Rightarrow Discussion of the possibility that the behavioural counterpart of the ability to recognize distinct pairs (x, y) where $x, y \in A$ such that XRy is ALL the child needs to successfully partition a set of concrete materials A , into equivalence classes. 2.10. Concluding remarks	\rightarrow The contribution of the study by M.L. Johnson - The hypothesis of a relationship between the child's classification ability and his ability to use the transitive property of the equivalence relation 'same length as' was not confirmed.	

SECTION 1

1.1. The role of the concept of equivalence relation in mathematics
"The concept of equivakence rekation is basic to mam ideos in mathenatics. It enabres us to find comon around for mat topics and is casily illustrater by conchete examples."

> (M. Bruckheiner and N. Govar: "Equivalence relations and Compatibility", thathematics Teaching, No. 34, Spring 1966, p. 60)

Part of the evidence which supports the above quotation is sumarized by the following diagram:

A selection of topics fron a "traditional" D-Level fathenatios

Syllabus which are underpinned by an equivalence relation.

At least two of the topics in the diagrem present difficulties for pupils, both conceptually and manipulationally, which percoptive teachers have appreciated for a long tine. These topics are fractions and integers, where the difficulties centre particularly around acdition and multiplication, respectively. Any methods which offer possibilities of improving the teaching of these topics merit further study. The construction of integers as equivalence classes of ordered pairs of natural numbers and the explicit recognition of the logical status of rational numbers as equivalence classes of ordered pairs of integers (or natural numbers if only the positive rationals are defined) goes back at least to Landau's classic exposition (1930) (1); but these structures were for a long time approciated only by relatively advaneed mathematicians who were interested in the foundations of the subject.

Introducing them as part of the systematic line of development in school mathematics, or at least regarding them as essential background knowledge for teachers, only becane part of curcent thinking in the early '60s. See, for example, fansfield and Bruckheinor (1965) (2), and the School Wathematics project (1965) (3).

An essential step in the development of mathenatics along these lines is the careful definition of certain equivalence classes and the performance of operations on the classes as a whle, regarding then as new individual entities. These same jdeas have applications olsewhere, later on in mathematice - for example, in the teaching of vectors and in more advanced topics such as operational calculus and topology. This means that this new material was proposed not only as an isolated innovation but, in part, to improve the teaching in long-standing areas of difficulty. It was an important function of the "now" to make the "old" more intelligible.

Readers wishing to follow up a discussion of how three major steps in mathematical education - the introduction of "fractions", the introduction of "directed numbers" and the introduction of free vectors need not be regarded as three problems provided that they are seen from a suitably abstract algebraic (i.e. equivalence relation) point of view, are referred to two articles by B. Fletcher (1970) (4), and by T.J. Fletcher (1970) (5).

Further examples of how some of those devising new curricula considered that more explicit recognition of equivalence relations could assist the teaching of sone other traditional topics are provided by Skemp's treatment of lengths of line segments (1965) (6) and Choquet's treatment of angle (1969) (7). Very many mathematical entities can be regarded as equivalence classes - although to advocate teaching them
from this point of view at present might be neither natural nor expedient.

However, it is not the purpose of the present paper to justify our initial quotation. The point at issue is: can a similar statement be made about this concept with respect to sujects other than mathematics? In other words, are we justified in stating that
"The concept of equivalence relation is basic not only in mathematice but also in other parts of the curriculum?"
1.2. The role of the concept of equivalence relation in subject areas pher than mathematies

It appears that the enswer to the question posed at the and of the previous sub-section ie "yes". We begin our justification of this by coneidering words such as
congress, flect, pride, library, herd, audience. We see that each word in this list is, on can be, used to refor to a collection of objects, for example
library - a collection of bocks for study or reading. then used in this context, these words are described as collective nouns. They are a fundamental part of the classificatory system on which the Iinguistic structure of English and other Europeon languages is based.

But whenever large numbers of objecte are being classified, simple classifications are not usually enough. Frequently, further subclassificatione aro enployed. For examplo, on returning to our library example, we note that the Dewey classificotion syoten has been developed to provide a sorting process whereby the books in the library are allocatod to a particular set of chelves. This system dividee tho collection of books in the library into susete according to the
oubject mattor of the book and epecifies their location to the potential borroner.

Similar systeme of classification and sub-classification can be found in almost any area of human activity. But whichever sub-classification is being used in a given context, an attempt is being made to seprate the large numer of "objects" in the collection into subsets such that each "object" of the original collection is in one and only one subset. In other words, an atterpt is being made to partition the original collection. horeover, if no amiguities arise in the sorting process under considoration, then, as we shall see later, the resulting partition defines an equivalence relation and every equivalence relation defines a partition.

This separation into equivalence classes by an equivalence relation is important in mathonaties because the classes are used to build up further logical systems. Thus, at one end of the opectrum we have the precise classifications of mothematice in contrast with the less precse clascifications of everyday speech. For in spite of the fact that a large number of classifications used in everyday speech appear to be precise, closer examination reveals weaknesses and exeptions which would lead to considerable difficulties should these classifications be handed by the methods of mathenatical logic. Breakdown frequently occurs because the sots under diccussion appear to be well-defined when closer examination shows that they are not.

For example, at first sight it would appear that the hunan race is pertitioned into two equivalence clasees by sex; but until we have legislated for transvestites and pathological borderline cases, the sets are not well-defined. Even then, as the terms are nomally ueed, over a period of time certain rare individuale transfor from one eless to another.

Nationality appears to be a partitioning of living members of the human race into equivaleace classes. Closer examination shows that theso classes are not well-defined. The laws of nationality differ from country to country, somo people are stateless and at any particular moment the ctatus of some individuals may not be proporly defined. In everyday spech the attempt is often made to classify people by zace, but again closer examination shows that these divisions can be very illdefined indeed. However, the concept of race in the animal kingeon is more precisely defined in Biology. In fact, modern Biology depends upon systems of classification which are, ideally, precice and go back to Limnaeus and beyond. But prior to 1735, confusion had aricen amonget biologists because the same nane had been used for different plants (and animals) and different names had been given to the sare plant (or animal), and so linnacus introduced a system of naming aninals and plante which uses two words:

- The first word in the nome of every animal and plant is the Latin nome of the genus to which it belongs. (This defines its closest relationchip with other species, e.g. Felis cats and mamols like them.)
- The second word in the name is the Latin name of the species. (A species is roughly a group of individuals able to breed among thenselves if one disregards geographical separations but not to breed with orgeniens of other groups.)

Nany other biological systens of classification depend much on similar sequences of sub-divisions which lead to a diagran like an inverted tree. For examle, consider the extension of our previous example:

Comparatively little use sems to be made of this type of classification in nathematics. Dut one of the most eminent developmentel poychologists, Jean Piagot, pursued his early studies as a biologist. Consequentiy, the mathematical models of thinking which we find in his theories of cognitive development, particularly his theory of groupings (see Section 2.2.), draw heavily on this kind of biological thinking. Hexe; wo see parallels with the point of view that memers of an equivalence class in this kind of biological classification cen often be regarded as "equal" in the sense that they serve equally well to exemplify the properties involved in the partition. But in the Biology lesson this latter point should not be pressed too far as the child may see the characteristios much more easily fron somo menbers of a species thon from others.

In all of the examples just discussed the principles underlying the clessification have been non-numerical. However, partitioning is often brought about by numerical relationships and we will non give some examples of these from various subject areas. The extent to which "calculations" are done with the equivelence clasees varies and, generally speaking, the examples to follow show a progression . the "calculations" with equivalence classes being inereasingly irportant in the later examples.

In the musical scale notes on octave napart (or an integral number of octaves apart) have a particularly simple relationship between thoir frequenciee and thjs is the underlying reason for their being denoted by the came letter. Practically, the existence of this close relationchip means that when a piece of mucic is arranged for different inctrumens, a nelody may be tranoposed an octave if this is more convenient, without affecting the harmony. For, to a large extent, the notes occurring in chords are sepresentatives of equivalence classes, another mender of the class could replace then, although rather special rules apply to the base notes of chords.

Music at another level shows equivalence classes of relations - as distinct from equivalence classes of elements. Husicians think in terms of intervals and an interval is an equivalence class of pairs of notes just as a rational number is an equivalence class of ordered pairs of integers. For example, the major scale incorporates the intervals:
tone, tone, semitone, tone, tone, tone, semitone.
These are relationships between frequencies and equivalent relationships occur in every major key. (See Budden (a)).

The ideas considered above are part of musical theory and the academic nusicion has to work with proper regard for the grammar of those ideas. He will not usually think of this process as being one of calculation, although students who pase harmony examinations by using the rules, Without mentally hearing the notes they are writing dow, must surcly be porforming a process closely resembling calculation.

Nany systeme of classification aro used in Geagraphy, but we will mention one in which the partitioning of points into equivalence classes tekes an unusual form which has interecting geometrical properties. Isopleths are lines dram on a map through places having the same value
of some measuroment. Thus contour lines are isopleths because they are lines dram on a map through places having the same height. Isotherms join places having the same temporature over a cortain period. Isogonic lines join places having equal magnetic declination. Geographers also use isobars (pressure); isobaths (depth below sealevel); isohalines (calinity); isohols (duration of sunchine); isohyets (depth of rainfall) and isonephs (cloudinese).

In every case the equivalence clesses correspond to lines on a nap only sone of whioh are drawn, and in a sense the geographer "calculates" with these in an intuitive way. For certain geometrical features indicate related appects of the variable concemed. Thus, where the isopleths ere closer together the quantily is changing more rapidly; closed loops surround local maxima and local minima; a saddle point hes its own peculiarities, etc.

Chemistry has made progress by recognizing equivalences. Initially, the chemist eppears to be confronted with an infinite variety of substances. As a result of the experience of centuries, these becane classified as a certain number of elenente and their compounds. Thus chemists decided that there wes not an infinite variety of atons, but only (in the first place) 92 different kinds. In addition, it vas also recognized that any one atom of say, hydrogen could replace any other atom of hydrogen without the change being chenically noticesble. Thus the fundamental components of notter, as seen at the time, were put into 92 equivalence classes. Under this system some apparently different thinge are clessified as equivalent. Thus certain physically different substances are all clessified as sulphur; charcoal, graphite and diamond are all clessified as carbon, and so on. This view, hovever, has had to be adapted to deal with icotopes and with the
internal structure of the atom, and it continuer to be adapted to accomnodate new discoveries on particle physics. Dut these refinemente do not alter the fundamental strategy of orgenizing the fundmental constituents of matter into cone specific numer of classec, the moners of which are in some tense equivalent to sach other.

The periodic table had the adventage of grouping together elemonte with similar physical and chemical properties. These properties are largely dependent upon the number of electrons in the outer shell of the atom, and proceeding down group of the periodic table, there is an increase In the tendency:
(a) to form electrovalent compounds containing positive ions,
(b) to show metallic character,
(c) to be e reducing agent,
(d) to fom basic oxides and hydroxidos.

In addition, the periodic table produces a grouping of elements which to sone extent can replace one tnother in compounds. For example, consider some of these chemical relationships between the elewents in Group 1 and Group 7.

Group 1
 Group 7

3 Li	Lithium	Fluorine	F	9	Bromine is able to
11 Na	Sodiun	Chlorine	Cl	17	digolace iodine: E.g.
19 K	Potassium	Bromine	Br	35	$2 \mathrm{KI}+\mathrm{Br}_{2}=2 \mathrm{KSr}+\mathrm{I}_{2}$
37 Rb	Rubidium	Iodine	1	53	Chlorine is whle to
55 Ce	Cacsium	Astatine	At	85	dieplace bromine: e.g.
87 Fs	Francium				$2 \mathrm{KBr}+\mathrm{CI}_{2}=2 \mathrm{KCl}+\mathrm{Br}_{2}$
					Fluorino is able to displace chlorino: e.g.
					$2 \mathrm{KCI}+\mathrm{F}_{2}=2 \mathrm{KF}+\mathrm{CI}_{2}$

Thus we see that the arrangement of elenents in the periodic table was an attenpt to produce equivalence clesses and subsequently to order then. It must have looked initially as if this clansification would account completely for valency; but unfortunately this was not to be. If it had been possible to explain valency by attributing to overy olement a unique (emoll) integer, thie would have been a further triumgh for equivalence clacees.

The examples discussed are just a few of many that could have been chosen to illustrate the differences which occur between the clabsifications Which are ascociated with equivalence relations and those thich are associated with near-equivalence relations (i.0. relations like "is a Eynonym of" on the set of all English words which tend to be spoken of as if they were equivalence relations but which do not in practice entirely satiofy tho mathematical criteria for an equivalence relation (seo Section 1.3.)), and between those which have numerical and non-numerical. principles underlying them. Further examples could have been given from the fielde of

Art	(shape, colour, naterial employed, ... etc.)
Handicraft (techiques enployed, tolerances, ... etc.)	
History	(political affiliation, dynactiee, ... etc.)

to highlight these differences.

But there is one further example thich should be discussed in fuller detail. In the following paragraphs we will consider some Inguictic ideas usually associated with Chomsky. These concern the gromatical structure of spech, and we will see that they make use of certain partitions of words and phraser into equivalence classes. Furthernore, a certain algobraic structure relates those classes to one another.

For the purpose of introducing the ideas to be discussed, we will begin by considering some of the pointe made by Ruth Strickland (1962) in "The Language of Elementary School Children: Its Relationchip to the Language of Reading Textbooks and the Quality of Reading of Selected Children". Here Strickland, who is concerned with the development of lenguage in young children, describes simple methods of constructing sentences. This starts with a "fixed slots" approach in which numbers are assigned to types of element as follows: subject verb copula indirect object direct object complement 1

2
$2 b$
3
4
5
so that

This means that acceptable sentences are of certain preseribed patterns, e.g. (124), (12b5), and that particular sentences are obtained by replacing "variablee" such as "4" by perticular "values" such as "cat" or "sweet". The variables are therefore equivalence classes and the values they take are elements which are equivelent to one another in the sence that they are equally acceptable from a gramatical point of viev. It is important to note that this type of analysis is concemed all the time with gramatical form and not with meaning.

Chonsky" phrase-structure gramar can be regarded as an extension of the above method. An example of one such system is

(See Lyons (9), p.59).

Note that each one of this set of rules is of the form $X \longrightarrow Y$, where X is a single symbol, Y is a string consisting of one or more symbols and \longrightarrow denotes "rewrite X as Y ". (We regard $N P$ and VP as single symols). And 50 , on starting with the symbol "Sentence" and epplying rule (i) we obtein

$$
N P \div V P
$$

by (ii) and (iii) we obtain

$$
T+N+V+N .
$$

On applying (ii) egain, we obtain

$$
T+N+V+T+N .
$$

Finally, on applying (iv) and (v) twice and (vi) once, we are able to obtain the torminal string
the + man + hit + the + ball.

This process, which has generated the sentence "The man hit the ball", con be sumarized by a tree-diegran as follows:

This particular example given by Lyons of a phrase-structure grammer is rather trivial as it will generate only one type of sentence. other similar syotems are much richer and will, in fact, generate indefinitely long sentencee of the type occurring in "The house that Jack built", for example.

He will now give some examples which illustrate this aspect in a context which shows that the type of thinking employed by Chomsky in linguistics is also employed in nathematies.

Examio 1

Reversed Polish notation is employed in mathematical logic and computing. In fact, many pocket calculators use it rather than the conventional algebraje notation.

Working with some particular system employing Polish notation, all the acceptable expressions can be generated by the following rules, which are written in the notation employed by Lyons.

	(i)	$\exp \longrightarrow$ var
OR	(立)	$\exp \longrightarrow \exp +\exp +\mathrm{binop}$
OR	(iii)	$\exp \longrightarrow \exp +$ unop
	(iv)	
	(v)	inop $\longrightarrow\left\{A,{ }_{\text {l }}\right.$, . . $\}$
	(vi)	unop $\longrightarrow\{N, R, \ldots$,

The interpretation of these synols is es follows:
exp denotes an expression
var denotes a variable from the set x, y, z, \ldots
binop denotee a binary operator, and A, H, . . . are the binary
operators such as "sdd", "multiply", etc.
unop denotes a unary operator, and N, R, . . . are the unary operators such as "negate", "reciprocate", etc.

Hence, successive application of the above rules can generate

$$
\exp +e x p+b i n o p
$$

from "exp" by rule (ii). On applying rule (iii) twice, we obtain

$$
\text { exp }+ \text { unop }+ \text { exp }+ \text { unop }+ \text { binop }
$$

Application of rule (iii) to the above expression as a whole, gives

$$
\text { exp }+ \text { unop }+ \text { exp }+ \text { unop }+ \text { binop }+ \text { unop. }
$$

And so by rule (i) twice, we now have

$$
\text { var }+ \text { unop }+ \text { var }+ \text { unop }+ \text { binop }+ \text { unop. }
$$

On choosing x as replacement for the first "var", y as replacenent for the second "var", R for "unop" and A for "binop", and on dropping the addition signs as we have now chosen the symble for our terminal string, we obtain
$\times R$ YRAR.
In ordinary notation the expression obtained is $\frac{1}{\frac{1}{x}+\frac{1}{y}}$

Example 2

The official intemational definition of the much used programing lenguage ALGOL 60 is given in this form. (See Naur (10).)

However, the limitations of the above approach in analysis of language are several. We have already noted that we are not concerned with meaning. Moreover, this approach is not really adequate for handling such aspects of language as inflexion, active and passive voice or changes of mood. To cope with these features Chomsky extended his ideas to transformational grammer. Transformational grammars are more complicated systems which consist of transformation rules that are applied to the phrase-structures derived fron the phrase-structure grammar. The transformation rules are often sensitive to context and they modify the simple classifications into equivalence classes around thich phrase-structure gramar is built. For example, if we try to proceed by phrase-structure we might in some system generate Pro $+V$, (i.e. pronoun folloned by verb). For V we might seek to substitute "eang". This would be acceptable if for Prowe substitute any pronoun. Problems now arise if we try to traneform Pro $+V$ from the past to the present tense, for "sang" has to become "sing" if Pro is "I", "you", "we" or "they", but "singe" if Pro is "he" or "she". Thus we see that
context is involved in a way which phrase-structure gramar in its besic form is insufficient to handle.

Recognition of these limitations, however, noed not detract our interest from the fact that for a particular phrase-structure gramon, to each of the symbols such as P, VP, etc., there conresponds a substitution set which is derived from the fundamental substitution set N, V, etc. Thus, as in traditional algebra, the symbls $M_{\text {, }} V$. . . . can be regarded as plece-holders for elements from the substitution eete and these substitution sets are equivalence classes with respect to gramatical acceptebility. They are in no way equivalence classes with respect to meaning, but this analysis is not concemed with meaning.

Following this line of argument, the linguist might be said to "calculate" with equivalence clasnes in the sense that combinatorial analysie is undertaken or performed with classes as wholes.

Many of the above ideas have been appiied to the teaching of foreign lamguges. As on elementary example we may give Longman's Audio Visual French, intended for lower secondery sohool children, which uses many exarples of fixed slot pattems with rather limitad substitution sets.

At this point to should note that equivalence clessee with rospect to o phraee-structure grammar in one language do not necessarily carry over ints other languages. For the structures of lenguages are often very sensitive to context (e.g. German). If we try and convert the diagram on page 18 into Cerman, the two 'T's have to be replaced by two different thinga, the first by "der" and the second by "den". These two Germen words are not equivalent. In order to produce grenamatically acceptable sentences one, or the other, or even sone other verient, has to be substituted for ' T '. Hence

The man hit the ball \longrightarrow Der ham schlug den Ball

The we see that the set of rules with their associated equivalence classes, given on Page 11, which produces gramatically acceptable sentences in English does not produce gramatically acceptable sentences in German if the rulos and the equivalence clases are branslated as they stand. So phrase-structure grammer may be of very linited help in problens of translation. In addition, meaning is sensitive to context and as there is certainly not a one-to-one correspondence between words and phrases in afferent languages examples frequently occur there simple words such as "box" in English and "boste" in French correspond in certain contexts but not in others.

Before concluding this revien of linguistios, we must also point out that within a particular language chomsky and his follovers have argued that certain patterns are fundamental in gramatical spoech, snd that these patterns enable all fluent speakers of that lenguage to produce and understand sentences which they have never heard before. In other words, the "creativity" within a language appeare to imply the fundamontal importance of equivalence clasces.

We have given merely a small selcction from on enombus range of possible examples of the uses of equivalences and near equivalences. It is to be hoped that this selection, small though it is, is sufficient to indicate that equivalence classes (and by inplication partition with the associated equivalence rolation) are an essential mode of thinking for adult English speakers and indeed for adult speakers of all the familiar languages of developed countries.

Children, hovever, have their own patterns of thinking which ore developing towards adult form, but which at various etages of growth dieplay more or less stable configurations with a logic of their own. Consequently, we must now turn our attention to cognitive development
theory, for as pointed out by L.f. Steffe (11)
" . . Cognetive developnent theory can contribute to an understanding of how it is a chied acquites bnowedne of the matheraticat sustens theough its deserintions of cognitive oportions chiedren acquire and the nechonism though which chition acquire then. A mothomaticot educator cannot stop there, however, because the cogitive operations denanded by mathematical systems muy be distinguishable foon (but include) the cognitive operations described in cognetive-developant psychologe. Wethencios cducatons do not yet bhow how to utieize the cognitive operations studied in cognitive develomont psychologe in the furthor acquisition of cognitive operations dompded by the mathenticat senstoms mentioned. In fact, fen atempts hwe been made tovard the icientification of relationships betwen the cognitive operations studied in develomentet psycholagy and the cognixive openations denanded by the mathematical oystens. ..." ((11), p. 3).

Thus, on taking up the challenge introduced by Steffe, we see that an eseential preliminary to any discussion of the ways in which equivalence relations and the associated jdeas of partition and equivalence classes are and could be used, is an investigation arising from the following question:

If a child is or is not in possession of the cognitive operations associated with the properties of an equivalence relation, what does this say about his knowledge or acquisition of an equivalence relation?

In other words, we require an investigation of the probable growth of
the concept from initial gemanation to explicit recognition and confident use. Section 2 of this paper is therefore devoted to diecuscion of the psychogenotic development of the concept of equivalence relation.

But so far the tera "equivalonce relation" hae been undefined. Our inmodiate requisenent is magred sot of definitions and results associated with equivalence relation on which to base tho diccussion to be undertaken in Section 2. It is therefore proposed that the following definitions and resulte be taken as the agreed foundation. We shall use then throughout except in direct quotetions.

1.3. Dofinitions and recults

SET will be taken as an uncefined terme
Intuitively a set is seen as ony collection of objects, which may be concrete objects (eog. doge, chaira, Hanchester United Football tean (sech as a specific set of playors)), or abstract objects such as other seto previcusly dofined (e.g. Football teans in the Firct Divicion). Sete can sometime be defined by explicitly listing their elements. In general, we say that each object in the set is on ELEMENT of the bet. We also use the nomencleture that each element 0clones to the cetn To avoid having to write in full that any element x either bolongs or does not belong to a set, ve use the following notations

At this point we ohould note that sot theory, in elcnentary teaching, is usually introduced by what nay be termed "unformalized description" as exemplified by the above paragraph. It can be objected that such
unfomalized decoription only conveye mything to tho reader becauce he implicitly approcietes certain equivalences. Thus, thic fom of preontation runs the riok of a cortain kind of circularity. The elomonts of a set are in some particular reletion to one enother (if only in that they have been ascribed to the vane set) and it would seem that we cannot identify the set without at the sane tine recognizing the relation and we cannot teccribe the relation withat at the camo tire recognizing the set.

However, even with fully fomalized axiomatic set theory, in the most rigourous mathematical formulations so for achieved, comothat similar objections apply. Because if a symbol 'A' is used, the reador has to regard various bymol 'A's on different parts of the page, each differing from the others in microccopic detail as well as position and so recognizably distinet, as denoting the same logical 'object' - that is bo say as being in sono wey equivalent. It would be difficult to conceive of any formatation to which this does not apply.

Dut this objection clearly involves a confucion of the theory and the meto-theory. It involves a confusion between the well-definod syetem under cerutiny and the incompletely dofined oybtom, potentally caposle of indefinite extencion and modification, within which the system under study is enbedded. We have to avoid circularity in the theory, we cannot guarantee to avoid it in the meta-theory.

Then the various symble 'A' on a pago of set theory or logic are recognized as boing "the same", this recognition (i.e. this use of an equivalence relation, or uee of an equivalence class - whichever way it is regarded) is outcide the theory. There are many equivalent. 'A's, but there is only one A.

This being gaid we will now proceed with our description of set thoory
at an introductory level.

When every element of the set A is an elenent of a set D aleo, we say that A is a SUnSET of 0 and denote this as follows:

$$
A \subset B
$$

Thus A is said to be a subset of n if and only if, each element in A also belongs to B, ine. A is a sunset of B if $x \in A$ implies $x \in B$. Note aloo that this cefinition of a susot does not exclude the possibility that the two sets are equal; indeed, it leads to a convenient definition of equality. Two sets E and F say, are said to be equal if and only if each is a subset of the other. Hence, we vilte $E=F$ if and only if $E \subset F$ and $F \subset E$.
$A \cap B$ is read as "A intersection $E^{\prime \prime}$ and is uced to denote the oet of elements which belong to $00 T H A$ and D. i.e.

$$
A \cap B=\{x: \quad x \in A \quad \text { and } \quad x \in B\}
$$

Which is read "A intersection B is equal to the set of all elenents x such that x belongs to A and x belonge to $\mathrm{Br}^{\prime \prime}$.

NB. This definition uses a style of set description which is open to mothonatical objection but is usually found more readily intelligible than a more corroct form. Here, technically $A \cap B=\{x \in A: \quad x \in B\}$ is better.
$A \cup B$ is read as "A union $B^{\prime \prime}$ end is used to denote the set of clenents which belong to A or B or boths i.0.

$$
A \cup D=\{x: \quad x \in A \quad \text { or (inclusive) } \quad x \in \beta\}
$$

The cet of all ordered pairs (x, y) such that $x \in A$ and $y \in B$ is cenled the cartegian provuct of A by E and it is denoted by $A \times 0$.

$$
n x \square=\{(x, y): x \in A, y \in 日\}
$$

Thus the orderod pair (x, y) is an ELETENT of the Cartesion product if $x \in A, y \in B$.

Any subset R of such ordered pairs (i.e. a subset of the Cartesian product) defines a CORfESPONDENCE denoted by the ordered iniple of sets (A, B, R) fron A to B with

$$
R \subset A \times B
$$

As a special case A and B may coincide, in which case wo speak of a RELATION R IN A. The relation is the ordered pair of sets (A, , 1) where

$$
\pi \subset A \times A
$$

For every set A there exists

$$
D_{A}=\{(x, x): x \in A\}
$$

which is called the DIAGCNAL of A. Thus we see that D_{A} is a subset of $A \times A$, i.e.

$$
D_{A} \subset A \times A .
$$

Further relations on a given set may be defined by introducing two operations, inversion and composition.

Every relation (A, R), where $R \subset A \times A$, has the inverse $\left(A, R^{-1}\right)$

$$
R^{-1}=\{(y, x):(x, y) \in R\} .
$$

If $(A, 5)$ and (A, T) are two relations in A, their composition is also a relation (A, Sot) in A given by

$$
\text { SoT }=\{(x, y):(x, z) \in S,(z, y) \in T\}
$$

A relation (A, R) in A is said to be REFLEXIVE if

$$
D_{A} \subset R .
$$

A relation (A, R) in A is said to be ANTIREFLEXIVE ${ }^{(1)}$ if

$$
D_{A} \cap R=
$$

where f denotes the empty set.
(1) These definitions correspond to the temainology as used in "Travaux Pratiques de fathénatique - Serie II: Les Reiations", by Duvert, Gauthier and Glaymann, 0.C.D.L., 1968.

A relation (A, B) in A is said to be NON-REFLEXIVE (1) if

$$
E_{n} \not \subset R_{0}
$$

A relation (A, R) in A is said to be SWmetric if

$$
\mathrm{n}^{-1}=\mathrm{R}
$$

A relation (A, B) in A is seid to be ANTISVMETRIC if

$$
R \cap R^{-1} \subset D_{A}
$$

A relation (A, R) in A is said to be NON-SVMETMIC ${ }^{(1)}$ if

$$
R^{-1} \neq R
$$

A relation (A, R) in A is said to be ASWPAETRIC if

$$
R \cap R^{-1}=h_{0}
$$

A relation (A, R) in A is said to be TRANSITIVE if

$$
R O R \subset R
$$

A relation (A, R) in A is said to be ANTITRANSITIVE if

$$
(R \circ R) \cap R=\neq
$$

A relation (A, R) in A is said to be NON-TRANSITIVE if $R \circ R \notin R$.

These definitions are not necessarily universally aceepted.

The aove type of formulation may be unfamiliar to sone readers. What follows may seem less obscure because it is an attempt at a more direct model of ordinery speech and reasoning. Unfortunately it is also somewhat less precise. Howevor, we are not so much concerned with definitione as with indicating correspondences between ordinary language and an idealized model.

A relation in A may be donated by the letter P say, which replacen the
verb or verbal clause in a statement. Here
aPb
has to be a neaningful statement for all $a, b \in A$ which is eithor true or false for any $a, b \in A$, but never both.

The relation P in A is REFLEXIVE if and only if for all $x, x \in A$, the statement $X P x$ is true.

The relation P in A is ANTIREFLEXIVE if and only if for all $x, x \in A$, the statenent $x P x$ is false.

The relation P in A is NON-REFLEXIVE if and only if, for some but not all $x, x \in A$, the statement $x P x$ is true,

The relation P in A is SWAWETRIC if and only if, whenever $x y$ is true then $y P x$ is true $(x, y \in A)$.

The relation P in A is AntISYMETRIC if and only if whenever $X P y$ and $y P x$ are both true then $x=y$ is true $(x, y \in A)$. (By $x=y$ we meen that x and y are both the same element of A_{0})

The relation P in A is NON-SWPETRIC if and only if for some but not all $x, y \in A: x^{3} y$ is true and $y P x$ is false $(x, y \in A)$.

The relation P in A is ASYMPTRIC if and only if whenever P y is trus yPx is false ($\mathrm{x}, \mathrm{y} \in \mathrm{A}$).

The relation P in A is TRANSITIVE if when $X P y$ and $y P z$ are both true then $x>z$ is true ($x, y, z \in A$).

The relation P in A is ANTITRANSITIVE if when $x P y$ and $y P z$ are both true then $x p z$ is false ($x, y, z \in A$).

The relation P in A is NON-TRANSITIVE if for some but not all $x, y, z \in A, x P y$ and $y P z$ are both true but $x P z$ is false ($x, y, z \in A$).

We can now define equivalence relation:
A relation which is at one and the same time reflexive, symetric and transitive is an mquivalence relation.

A PARTITIDN of a set A is a separation of the elements of A into subsets such that each elenent of A is in one and only one subset.

These last two definitions give rise to a very important result: Any equivalence relation R in A partitions the set in that x and y belong to the same subset if and only if xiy, and conversely, given a partition of a set $A, x R^{1} y$ if and only if x and y belong to the same subset of the given partition of A, defines an equivalence relation R^{1} in A.
(See Appendix 1).

The subeets of a partition of A are called EQUIVALENCE CLASSES.

The teras defined above will assist discussion in the following section. It will be seen that we have defined ten possible properties of a relation yet our final definition of equivalence relation requires only three of them. This is done partly for clarity (because variations in the terminology do occur), partly because when discussing examples of a particular property one also needs to discuss the various types of counter-examples, and partly for completeness. Relations possessing other combinations of these properties (i.e. other than the specific three properties of equivalence relations) are by no means without importance and relevance as we shall see.

SECTION?

2.0. Aim of the section

In this section an attempt will be made to establioh a franevork within which observations about the development of the concept of equivalence Felation can be organized.

2.1. The contribution of Piaget

As no investigation into any aspect of concept development can ignore the trenendous contribution mede to this fiold by Jean Piaget, a review of the relevant factors in his work will be taken as our storting point. Further justification for this line of approach, in view of the aim of this section, is provided by D.C. Johnson (12).
". . . the research kiterature surrounding the work of the Geneva school provides a framenork for
(1) expluining how mentul operations basic to methenticat thought develop.
(2) identifuing structurat characteristics of thought as they undetgo change weth age, and
(3) forming a theoretical basis for certain curticulor decisions ond experiments in the teaning of manematics."
((12) p. 123).
But on examining the detaile of this structure which relate to the concept of equivalence relation, we may find that the framework constructed to date is too coarse to provide sufficient help for the classroon teacher. It is possible that there are large geps in our knowledge which need to be filled. This cautionary note is even more appropriate when we also take into consideration the fact that Piaget has done and said so much in fifty years of work on cognitive development that foci for contention and disagreement abound.

However, the widely recognized and substantially uncantested parts of Piaget's work are his obversations of children and his deseriptive
accounts of the stages of development their thinking goes through. Less well know, but of great importance to Piaget himself, are the theoretical models of cognition he has devised to describe the characteristics of thought which appar at different stages of development. The predoninant part of this is the theory of groupings, which provides algenraic models of various aspects of thinking much as the more recent work by Thom (13) provides topological models of other aspocts of thinking.

2.2. Piaget's theory of groupings

The three defining properties of an equivalence relation, reflexivity, symnetry and transitivity, are attributes which have been incorporated into Piaget's theory of groupings. There are nine distinct groupings which Piaget and his assucjetes have derived in their attempts to find adequate models of cognition in the concrete-operational subperiod of child development. Of these one is romarded as a minor, preliminary grouping as it occurs as a special case in the remaining eight more complex structures. But all of Piaget's groupings are seen as possessing the attributes of a group* and a latice*".

[^0]For the eight major group/lattice structures (i.e. groupings) conceived by Piaget, the following quotation from "The Developmental Psychology of Jean Piaget" by J.H. Flavell summarizes their role.
"These groupings are viowet as models for coontion in several dibuerent reatms of intedectual endeavor. First, they describe the organization of Rogicas operations proper, i.e. operations deabing with logical classes and relations. Four of the major ghoupings relate to chass operotions and the other four to relation opetations. Scond, these same groupings afso fit the otgonization of what piaget cates infrapogical operations Ii.e. cognitive actions beating on position and distance relationshiss and port-mole relationshos aphopos of conchete spatiotemporal objects or contigurations)". ((14), p. 171).

In particulor, groupings I - IV concern operations porformod on sets (reforred to as logical closses above). On the other hand, groupings V - VIII involve operations upon the relations which may exist between two or move elements or between two or more sets. But fundemental to each is the hybrid structure between a group and a lattice.

The formal properties for the composition of opeations in a grouping, as given by Piaget in "la Psychologie de l'intelligence" (1947), produce an unsatisfactory mathematical formalization. In particular, wo noto that.

(i) $x+y=z$	(composability)
(ii) $z-y=x$	
or $z-x=y$	(Ievercibility)
(iii) $(x+y)+z=x+(y+z)$	(associativity)
(iv) $x-x=0$	(identity)

where x, y, and z represent grouping clements, and $"+$ " and " $"$ " represent
grouping operations, bore or lese describes the group-structure. By includirg

$$
\begin{array}{ll}
\text { (v) } x+x=x & \text { (tautology) }
\end{array}
$$

honever, Piaget's grouping reduces to a singleton-group only, as there can only be one idempotent element in a group, namely, the identity element.

Moreover, Piaget's account of his groupings is far from clear. (See (15), (16) and (17)). For example, his account of the preliminary grouping of equalities does not appear in these three references but it is described in (18). This is reported by Flavell (14) who says (p. 187).
"The Preqininaut Growing of Equatities. Brief nention muy be made of this extremely simple but fundamental grouping witich is said to occuk in disguised form as a special case in all the preceding major groupings. ($(18), p, 33-34)$. It closely resembles Grouping VI, inasmuch as it involves the addition of a particular type of symmetrical relation: equality on. as Piaget somerimes calls it, "pure equivalence". Its compositions are of the form $(A=B)+(B=C)=(A=C)$; such compositions are clearly associative; the inverse of an operation $(A=B)$ is, analogous to Crouping VI. $(B=A)$; the general identety is $(A=A)$; and each equality plays the role of speciat identity with itself and every ather equalitu, e.g. $(A=z) \div(A=B)=(A=B)$ and $\left(A=B \mid+\left\{C=D\left|=|C=D|^{\prime \prime}\right.\right.\right.$.

But this account appears to contain a number of notational obscurities and confusions.
(a) Basic to these is the lack of definition of the set involved. Is $\{A, B, C, . .$.$\} the set under consideration or have we to$ regard $(A=B)$ as a typical elenent of the set?
(b) The equals sign is used to denote both 'equality' or 'pure equivalence' between two elements of a set, and also to denote the deduction of one statement from another, or the deduction of a third statement from two given ones. To accommodate this; the stakements are re-written below using \sim to denote 'equality' and $\Rightarrow \Rightarrow$ for irplication. It nay also be observed that 'equality' or 'pure equivalence' is a symmetric relation whereas 'implication' is not.
(c) Composition of relations is confused with logical 'ond' (i.e. conjunction). But composition and conjunction differ in nature in that composition is not in general comatative (i.e. $a \circ b \neq b \circ a$), whereas conjunction is, and also that when elements have inverses (as here) composition can be 'undone', meaning

$$
\text { aobob } b^{-1}=a
$$

whereas there is no corresponding process with conjunction. However, in the note on "The Preliminary Grouping of Equalities" there is the effort to combine together relational statemente as if they wore elements of a group - which they are not. They are not because they only obey a restricted law of conposition, much like bound vectors in formulations of vector algebra (or nearvector algebra) in which $A B+\mathrm{DC}=\mathrm{AC}$ but where we may not say $A B+C D$ equale anything. However, it would be possible to legitimatize this by a construction analogous to the one employed to turn the algebra of line segments into the algebra of vectors.

It could be the intention to deal with equivalence clesses of statements, but this is nowhere stated. Once again the set under discussion is not clear.

It would seem possible to re-vrite the above cquations in an acceptable mathematical form as follows:
(d) $(A=B)+(B=C)=(A=c)$

$$
\text { becones }(A \sim B) \wedge(B \sim C)=\Rightarrow(A \sim C)
$$

(e) the inverse of $(A=B)$ is $(B=A)$ becomes $(A \sim B)=\Rightarrow(B \sim A)$
(f) the general icentity is $(A=A)$ becomes, for all $A, A \sim A$.
(g) The final two equations concerning the special identity properties of 'equality' nay be reformulated as follows:

$$
\begin{aligned}
(A=B)+(A=B)= & (A=B) \\
& \text { becomes }(A \sim B) \wedge(A \sim B) \Rightarrow(A \sim B)
\end{aligned}
$$

and

$$
\begin{aligned}
(A=B)+(C=D)= & (C=D) \\
& \text { becones }(A \sim B) \wedge(C \sim D) \Rightarrow(C \sim D) .
\end{aligned}
$$

These two equatione suggest that the elenents of the set under consideration are equalities of the form ($A=0$), and they are an attemt to force a group structure on the set of elements of this form, which they do not necessarily have for the reasons considered in (c) above.

Horeover (d), (e) and (f) correspond to the properties of transitivity, symnetry and reflexivity - the basic properties of an equivalence relation. Thus, given that Flavell has accurately translated the relevent section on $\mathrm{p}, 33-34$ of "Classes, reletions et nombres: essai sur le 'groupement' de la logistique et la réversibilité de la pensée", we see that Piaget's preliminary grouping "simple, but fundarmental", "which is said to occur in disguised forms as a special case in all the
preceding major groupings" seens to be nothing but the idea of an equivalence relation in a malformed notation.

At this point we should note that Pieget was not attempting to give a fully formalized account of his ideas and it is hardly appropriate to eriticize hir for omitting mathematical detail where it is clear hou it may be filled in, but there are some placen where it is not clear how it is to be filled in. It is not clear how sets and relations are to be defined, which of the two is fundamental, and which (if either) is to be defined in terms of the other. This means thet there is a serious risk of circularity in the fundamental concepts.

Unfortunately, circularity scens to be regarded as an unavidable problem in this field of psychology, as the following argument by Lesh (19) showe:
mathematicians can fonnolize a mathonatical structure le.g. define a strict partiat ordering relation*) by starting with

[^1]" $<$ is a strict partial ordering on a set S il $<$ is a set of ordered pairs of elenents in S such that

1. Fon everu cloment a in $S,(a, a \mid$ is not in $<$, (nontefcexive propertg).
2. For cucu pair of elements a, b in the set s, if (a, b) is in $<$ then (b, a) is not in $<$. (asmanetric property),
3. For any three cloments a, b ond c in the set $S, i f(a, b)$ is in $<$, and $i(b, c)$ is in $<$ then (a, c) is in $<$. (thansitive propentil." (119). p. 98).

This definition differs somewht from the standard English dofinition of a strict partial ordering relation, but of greater significance to the present discussion is the fact that the term 'nonreflexive' has been used to nome the property which we, following Duvert ot al, have called the antireflexive property. (he repeat that oxcept in quotations we shall use the terminology given on pages 21-24.)
certain axions, undesined terns, or accepted nures of rogic, and consinuct theoters and definitions on the basis of these. That is axiomatios terminates endeest regression by beginning with undefined terns and it evoids cincularity by orbitrarily choosing a starting point which has not been demonstrated. Psuchofogically, however, one is not chforded the luxurif of begining with indefinables, axions or accepted nules of logic.
For example, in the case of the ordering relation $<$. the nonreftexive, aspmetric and thansitive properties carnot be used as self-evident concepts. Before the rekation $<$ has been coordinated with its inverse, each of these properties is repeatedty and ofter emphatically denied by children ${ }^{(7)}$. Even such mathenatically prinitive concepts as Helbert's onder axiom $\left(i b_{B} B\right.$ is between A and C then it is also between C and A) are not a priori intuitions for children until the betweeness relation has been subsured wittion a system of nelations ${ }^{(2)}$.: (119), p. 291.

Is the author trying to say that the logical onalysis of any psychological situation must necessarily be circular? This claim would obviously be far too strong. Moreover, greater sympathy with the author's point of view would have been achieved if the argunents used had been besed on evidence of attempts to identify agreed primitive terms and axioms on which to bace definitions and theorems for thie branch of psychology. It is hard to beliove that any mathematician
(1) Inhelder, D. \& Piaget, J, "The early growth of logic in the child: Classification and seriation", translated by E.A. Lunzer, Routledge and Paul. 1964.
(2) Piaget, Jo i Inheider, 1, "The mental imagery of the child",
would wish to uee non-reflexivity, asymeiry or transitivity as selfevident concepte! Many applications of mathematics have to find sequences of development which may not correspond to the axionatic sequence by which the mathenatical model might be developed on its own, and they succeed by avoiding circularity, not acquicscing to it. The psychologist's plea that he is dealing with some unsequenced totality may be merely an adnission that he has not yet succeeded in recognizing a suitable sequence in terms of which to analyze the situation. But as we are concemed with psychagenetic development, it would seem to be the case that later stages are structurally richer than earlier stages and therefore that sone things precede others. Hence, if one is seeking to construct a mathematical model, then the problem is to ensure that the mathematical counterparte of the psychogenetically prior concepts precede (in a logical sense) the psychogenetically subseguent concepts. Such a model vould avoid circularity.

Fortunatcly, the incipient circularity in Plaget's presentation of the theory of groupings was avoided in the reformulation of grouping theory developed by E. Wittmann (20). This has been sumarized by H.G. Steiner (21) and this summary is reproduced here, with sligint notational changes to facilitate direct comparison with wittnann's original formulation.

2.3. Wittmann's and Steiner's reformulations

". . . a grouping is a 5 -tupfe $(M, M x, \Delta, o, \Delta 1$ with
Hie following data and properties:
(i) H is a non-empte set, whose elements a, b, c, .
(contd)
Translated by P.A. Chilton, New York: Basic Books Inc., 1971.
ore cailcd states.
(ii) A x in is the set of ape ordered paies (a, b) where $a, b \in H$. The demants $\{a, b \mid$ of $11 x$ thare caped operations:
(iii) \triangle is a subset of $M \times$ himose eloments are drled elenentaty operations,
[iv) o is the canonical partial composition on II x it definod b:

$$
(a, b) \circ(b, c|=|a, c|
$$

(v) Δ is a redetion in H, defind by means of \triangle in the forlowing wut:

. . $\left(a_{n}, b_{n}\right\} \in \Delta$ suciz that
$(a, b)=\left(a_{1}, b_{1}\right) \circ\left\{a_{2}, b_{2}\left|\circ \ldots o!a_{n}, b_{n}\right|\right.$.
\leqslant is the union of Δ and the identity ielotion in th.
(vi) The foblowng postutates shake hatd
(a) $1 x$ in is generaced by $\Delta \cup \Delta^{-1}$ serative to o $\left\{\right.$ where $\left.\Delta^{-i}=\{(c, d):\{d, c\} \in \Delta\}\right\}$
(b) $\left(n_{0} \leqslant\right)$ is a fattice. (21) , p. 242).

Hovever, Steiner omits to point out that froin this complex structure Witmenn does derive the five paychologically important properties which Piaget sought, as the following quotation shows:
"C.1. Composabieity of operations:
(i) within a natutat restidetion operations are arbitrarill composable,
(ii) as a ruke, an operation can be remesented as a product of operations in severie difterent vats.
Q.2. Asscciativity: the patiat composition o is thivinely associative.
Q.3. Reversibilitu: $(a, b) \circ|b, c| o|c, b|=|c, b|$ for all $a, b, c \in M_{0}$
G.4. Identicat operations:

> (i) $(a, b) \circ(b, a)=(a, a)$ for $a b$ $a, b \in H$ (ia) $(a, b) \circ(b, b)=(a, b)$.
0.5. Tautoloyy: If a $-1 b$ denotes the least upper bound of $a_{p} b$ in the lattice lor seni-Ratticel then, for ale $a, b \in M$ such that $a \geq b$
(i) $a L 1 a=a$ (tautologe)
(ii) $a\llcorner b=b$ labsorption)."
((20) p. 127-120).

In eddition, Wittmonn acknowledges that his account is a redundant formulation, and in fact H.G. Steiner (21) has shown how Hittmann's axioms can be simplified to give the following definition:
"A relotionat systen $[1, \Delta \mid$ is called a prouping it and onety if $[1 /, R T(\triangle) \mid$, where $R T(\Delta)$ is the neflexive thansitive huth of
\triangle, is a gattice." (21), p. 243).
(See Appendix $2 a$ for notes on the reflexive, trensitive hull of Δ)

From the obove definition the following properties vere also derived by Steiner to provide a comparison with Piaget's laus (i) - (v). (See pege 27).
(I) $(a, b) \circ(b, c)=(a, c)$
(II) $((a, b) \circ(b, c)) \circ(c, b)=(a, b)$
(III) $((a, b) \circ(b, c)) \circ(c, d)=(a, b) \circ((b, c) \circ(c, d))$
(IV) $(a, b) \circ(b, a)=(a, a)$
(V) $a L a=a$

But as already indicated, Wittmann deliberately maintained the extended forndation which is also close to Piaget's oniginal in deference to the paychologicel application for which groupinge were intended Nor muet wo lose sight of the funderantal reason for which they were conceived, that is, to mover the question: to what extent cen 7-11-year-old children operate to grouping specification and hence justify the grouping as a model of their cognition?

In response to this question Piaget has devised a varioty of experiments with children to see if it is possible to bring to the surface behavioural analogues or counterparts of one or other differentiating component of a given grouping. For exemple, Piaget has created teste to tap and probe for the presence or absence of

- the ebility to effect transitive compositions of asymetric relations (Grouping V - see Appendix 2b),
- the capacity to grasp the symmetry of symnetric reiations (Grouping VI).
2.4. The relevance of the experiments ascociated with Groupinge y and VI As indicated above, grouping VI involves compositions of several distinct and different kinds of symmetric relations: some transitive, some non-transitive, sone reflexive, some non-reflexive or antireflexive, whereas grouping V is specifically concemed with ssymmetric relations those compositione are transitive. Consequently, grouping VI has been teken as the model for the cognitive actions present when the child is using a symmetric rolation. Similarly, grouping V has been taken as the model for the cognitivo actions present in the act of saxiating objects at stage three level*, for corbinativity has been
interpreted in terns of relation composition to produce the required transitive property, as the following quotation shows:
"In Grouping V, Addition of Asmmotricai Relations, consider the seriation $0<A<B<C<D$, etc. If $0<A, O<B$, $0<c$, etc, ane denoted by $a, b, c, c t c$, and $A<B, B<C, C<D$, cte, are denoted by $a^{\prime}, b^{\prime}, c^{\prime}$, etc, respectively, then combinativity $\left(a+a^{\prime}=b\right)$ is intoupheted as thansitivity of the relation when witten as given. (Both and Piaget, 1966. 1. 177) ${ }^{(1), "}$

$$
((22), p, 40)
$$

Moreover on the basis of this argument Beth and Piaget (1966) ${ }^{(1)}$ hypochesize that transitivity is necessarily present when a child exhibits behaviour characterized as stage three (operetional) seriation* behaviour.

Thus we see that it is appropriate to the present investigation to consider the experinente and results associated with groupings V and VI. But the question as to which set of experinents should be considered first, now arises.

By folloning the suggestion
". - the teachen should first see how the child grasps each of these properties (i.e. reflexivity, symmetry and transitivity), independently of the others in situotions where they can be clearty illustrated." ((23), p. 20),
*Dperational seristion (otago three) is distinguished by

1. the discovery of a syctematic way of forming a ceries,
2. the ability systematically to insert new elements in an existing series.
(1) Beth, E.K. \& Piaget, J. "Hathematical epistenology and psychology", Dardrecht-Holland: D. Reidel, 1966.
our attention is imediately drawn to grouping V which, according to Piaget, via seriation, focuses on the transitive property, Horeover, this grouping is considered by piaget to be one of a pair of groupings which are the first to emerge.
"In fact, the operationat groupings which become establethed ot the age of round about 7 of 8 (a fittle before sometioss) end up with the following stuctures. First, they lead to the logical opertitons of class inclusion the question of brow beads A being less manerous than the wooden beads E is sotved about 7) and of seriation of asmmetric refations. Fron this comes the discovery of the thansituvity on which are based the deductions: $A=B ; B=C$ therefore $A=C$; or $A<B ; B<C$ therefore $A<C$. Further, as soon as these additive groupings have been acquired the multeplicative* grotpings are at once understood as cornespontences: knowng how to seriate objects according to the relations $A_{1}<B_{1}<C_{1}<$. . the subject has no further ditbiculty in seriating two on mone colections such as $A_{2}<B_{2}<C_{2}<$. Which correspond tom by tom: to one sequence of doles of inctessing size which he has atready ondered the 7-yen-otd wile know how to math a sequence of sticks on bags, and even be able to find,

[^2]ctore evertithing hos been mixed up, the elentent of the one sequence which cortesponds to some whithour clenent of the other the muteppicarive character of the grouping does not add any dificulty to the adderive operations of seriation which have atready been discovened.1"
(Tranclation of (16), p. 150).

Let us therefore consider experimants associated with grouping V first.

2.5. Grouping V

(i) Pianct's transitivity studies

The core operation of grouping V (i.e. the building up of eloments into a transitive, asymotric series) has been studied via
(i) the ability to seriate 10 sticks $(A-j)$ of varying lengths and then insert 9 more sticks (a-i) in their proper places. (Piaget, J. "The child's conception of number", New Yonk: Hemanities, 1952, ch. 6).
(ii) the ability to seriate three objects by weight, two at a time only, where volune is not a rolinale clue to weight. Piaget, J. 多 Inhelder, D. "Le developpment des quantites chez 1'enfant": Neuchatel: Delachaux ot Niestle, 1941, ch. 10).
(iii) the "Conservation of weight and transitivity of the relation " . . weighe nore than . . .'experiment". (Wuffield Hathenatics Project, "Checking Up II", Chabbero/ * (contd)

- to build a doule-entey matrix with respect to two asymatric, trancitive relations,
respectively.
Piaget regarde the setting up of a one-to-one correepondence between two sets of

Murray/Hiley, 1972, Sumary Check-ip Nc. 3),
to nome but three. (See also Appendix 20 for further instruments designed to test a child's ability to use the transitive property of matching and length relations,)

To illustrate the general tenor of these experiments, let us exanine more closely one of these experinents for investigating trancitivity of veight, namely (ii) above. As cutlined, this experiment ontails placing before the child three objects of different weight (but weight uncorrelated with volume). The child is then asked to seriate them by weight (e.g. Iightest, midile, heaviest) but under the condition that he can compare the weight of only two objects at a time. It turns out that young ehildren in the preoperational subperiod of developnent have considorable difficulty in solving this problem. Typical responses of such a child are as follows:
(a) he establishes only that A is lighter than B and A is lighter than C, and then concludes that
(i) A is lighter than B which is lighter than C
or (ii) A is lighter than C which is lighter than B,
(b) he is unable to "see" that A is lighter than C is a necessary conclusion from the knowiedge that A is lighter than B and B is lighter than C.
These responses indicate that in the first case (a) the child is draving an invaijd conclusion from evidence which does not permit a conclusion to be drawn, whereas in the second case (i) the child does not draw any conclusion fron evidence which pernits a conclusion to be drawn.

[^3]J.H. FIavell (14) sumarizes Piaget's interpretation of this type of response as follues:
"The central dificulty underting these divorse preoperational failutes, piaget believes (10), p. 301-302.), is the inobility to see that each element in on aspmetrical series must be sumbtaneously conceived in terms of both a ditect $(<)$ and an inverse $(>)$ relationat operation: the eloment 8 must be both lorger than A and smbler thon c to be inserted between them in the series. Piaget feces that the foilute to grasp this revensibility inherent in systems of asymetical relations lies behind the younger child's occasional willingness to conclude $B<C$ bron $A<B$ and $A<C$, his ocersional refuctance to conclude $A<C$ from $A<B$ and $B<C$, and his generat inability to oncate and manipulate asmmetsical seties." ((10), p. 193)

However, one of the probleme which arise when presenting an overview even of a limited set of experimente is that details that could be significant in a perticular situation en be lost. For exarples one reason why, for young children, weight and volume are apparently not coen as distinct and different properties which con vary independently, stems from the fact that weight and voluno are often correlated in nature. This fact is often relied on by sighted acults as can be tested by asking any sighted percon to judge the weight of two guiteases which are very different in volune (ono large and bullys, the other gmall ond compect), but thich are aproxinately the same weight. After lifting both suitcases, the odde are in favour of his response being that he found the larger vuitcase lighter, for on ceeing the two suitcases, ho sizes then up and anticipaies that the bulky one will be heavier becouse of ite volume and prepares himself accordingly, only to
find it lighter than expected.

Thus, if no balance is used, it is possible that "bigger therefore hesvier" type reasoning is operating for young children in the situation where the three objects used in experiment (ii) are three distinct cubical parcels as illustrated below:

(Weight 1 kg)

(Weight 2 kg)

Here, the child establishes that "A is lighter than B and A is lighter than $0^{\prime \prime}$ and since this does not contradict the "bigger therefore heavier" type argument the child continues to use that argument and gives the response sorresponding to $A<C<D$ without checking the relationshjp between B and C .

Thus we see that when devising a test situation which is intended to focus on a child's ability to effect iransitive compositions of an asymmetric, transitive relation, such as " . . . is liohter than . . .", there are at least three points requixing careful consideration. There is the need to check
(i) that the child has had sufficient experience in hending weight so that the likelihood of his recognizing the possibility of deducing something fron $A<E, B<C$ is increased,
(ii) whether any of the key attributes are undifferentiated by the child in his everyday conversation (e.g, age and size as exemplified by the remark "he's bigger than me" made by a 4ft 2 in 7-year-old boy of his 3 ft 10 in . 8-ycar-old friend.),
(iii) that there is no attribute of the materisls selected other than the one on which the experiment is beced, which could dominate the child's perception (e.g. length when transitivity of weight is under investigation.)

Concern over the use of distracting perceptual cues hes also been expresed by T.P. Carpenter (24). He criticizes the studies by Piaget, Inhelder and Szemencke (1960) which relate to the logical interdependence of conservation end measurement, on this point:
". . in ale comparisons distracting cues were perceprual.
... ((24), p. 145)
Moreover, Carpenter maintains
"There is evidence that certain conclusions of Pinget et at (1960) resuted from this lach of experinental variabilith.

They conclude that young childnen ate dominated by the innediate perceptuah qualities of the situation. However. the results of another investigation (Cappenter, 10711) 11 indicate that toung children respond to numorical cues tith about the sare degtee of prequency as pereptual cues." ((24), p. 145)

Consequently
". . the question as to whether conservation ond measurement
failures are primotily the result of a depentence on perecpruat ches, the order of the cues on an interaetion of
(1)

Corpenter, T.P. "The role of equivalence and order relations in the development and coordination of the concepte of unit size and number of unite in selocted conservation typo measurement problems", Tedmical Report No. 170, Wisconsin Research and Development Center for Cognitive Learning, Madicon: The University of Wisconsin, 1971.
the two wh investigated. That is, an atempt toe mode to determene whetho young chiedien hespond difgerently to visuat and numerical cues in conservation and measurement problens or whether they simply respond to the last cue available to theno" ((24), p. 151), was a main purpose in Carpenter' g investigation "The Performance of First- and Second-Grade Children on Liquid Conservation and Weasurement Probleme Employing Equivalence and Order Relations", and the conclusions arrived at from this investigation which relate to this purpose are
"It appeors that it is not shmply the perceptual phoperties of the sthuli that produce enrons in conservetion phoblens. There is no significant difference in difficulty between conservation problens and corresponding measurenent problems in which the distracting cues ore nunerical. The position of Piaget $\left.(1052,1960)^{(1)}, 12\right)$, Erener, Dever and Gueenticed (3) and others that young chiedren are highly dependent on perceptual properties of events and that conservation problens occur because the innediate perceptuat properties of the conservation probtens overtide the logical properties that daply conservation. has been based on tashes. in whith distracting visulat cues alweys appeared last. The results of the current investigation, however, demonstrate that
(1) Piaget, J. "The child's conception of number", Routledge and Kegen Paul, 1952.
(2) Piaget, 3. "Equilibration and the development of logical structures", in J.M. Turner \& 3 . Inhelder (eds.) Miocussions on child development.", Vol. 4, Tavistock, 1960.
(3) Bruner, J.S., Olver, R.R. \& Greenfield, P.M. et al. "Studies in comnitive growth", New York: John Wiley and Sons, 1966.
misfeading nwrerical cues phoduce the some orrors as misteading visual cues.
-••
Thus it appears that the most significant foctor in detomining wich cues toung chirdren attend to is the order in which the cucs appeot. . . . however the order of the cues wos not the only factor that was found to affect responses.

Thus, of the factors unden consideration in the study it appears that centering on a singte dominant dinension is the major reason for most conservation and measutement fotioures and the development of consenvation and measurenent concepts con be described in terns of increasing ability to decenter. In the earliest stage children respond on the bosis of a single immediate dominant dimension. The dimension moy be cither visuat on numerical, depending on the problem. . . ((24), P. 167-169).

However, in the present investigation, the conjecture that centering on a single dominant dinension is also a major reason for most trensitivity failures, which underlies point (iii) above, arose from discussion of the situation invalving the three cubical parcels. This situation highlighted the need for caution over the use of distracting perceptual cues when we can the possibility that a child could be using "bigger therefore heavier" type argunients.

But the possible use of the "bigger therefore heavier" type argument in this situation also suggests that transitivity of volume could energe before trensitivity of weight, whereas with respect to conservation, conservation of weight occurs before conservation of volume. (See
(14) : p. 290). But it is answers to questions such as

Is there a natural order of concept formation which is substantially unaffected by teaching, or can the order be chonged by eppropriate experience/teaching?
that are needed if we are to achieve our original goal of building a framework within which observations about the development of the concept of equivalence relation can be organized, In fact, there are two issues which denand attention when applying the above question to the acquisition of the concept of trancitivity.

1. If we consider transitivity with different physical quantities ($6 . g$. length, volume, weight), is it the case that these are alway acquired in some specific order, substentially independent of the experience/teaching given, or can the order be affected by the experience/teaching given?
2. If the concept of trancitivity is broken down into components, is it the case that in every physical context these components are acquired in an invariant order?

At this point we should note that the objective of identifying the order of emergence of transitive relations, as outlined by question 1 above, was not one of Piaget's major goals for the experiments he devised. Then the children were working with a transitive relation Piaget yas looking to see if they used the five properties of his grouping V, particularly reversibility, for as soon as reversibility appeare in the solution of a particular problem
". . The childes thought (for this one problem at Reast) has passed beyond the fevel of preoperational representation into the subperiod of concrete operations." ((14), P. 165).

In other words, Piaget was focusing his investigotione on part of
the answer to Question 2.
(ii) The extensions of Piagetian-type transitivity experiments
(a) Recent research in the U.S.A.

Many experimenters in following up Piaget's investigations have, however, extended the scope of the tests used in an attempt to find answers for Guestion 1. For example, in the investigation by D.T. Owens (22), questions asked of disadvantaged five- and six-yearold children after formal instruction on
(i) establishing makching relations (i.e. "as many as", "more than" and "fewer than") and length relations (i.e. "longer than", "shorter than" and "as long as") only,
(ii) establishing matching and length relations (as above), conserving matching relations and transitivity of natching relations*
included

- To what extent does an experimentally induced capability to conserve and use transitivity of matching relations transfer across relational categories to conservation and transitivity of length relations?
- Is the ability to use transitivity of maching relations related to the ability to use transitivity of lenget relations?
(See Appendix 2c for notes on the transitivity tests used in this investigation.)

[^4]In the discussion of these results which relate to the transitivity of matching and length relations, we find
"The mean porformane of the childnen in the fule treatnont ghow (i.e. those given formal inetruction on transitivity of natching relations) was significantely greater than the mean perfonnance of the children in the protial treatnent ghoup (i.e. those not given formal instruction on the transitivity of matching relations) on the Thansitivity of Hatching Relations Test. Thes was an indication that the treatnent was effective in improving the ability of the chiedren in using the thansitive property of these refations. However, the results from the Transitivity Problem indicated no relationshis between a student's membenship in a theatnent group and his level of perfonmance on the Transitivity problen. This apporent discrepancy may be interpreted by on examination of the tasks and the instuctional activities. In the instructional setting the children were instructed to establish the relation berween tho sets, say A and B, and between B and a thited set C. The sets were constructed in such a wuy that the sane relation existed betveen B and C as between A and B . The chiedren wote then asked to predict the relation bedveen A and C and whe given on oportumity to veriby their prediction. Each iten of the sturctured thansitivity test followed this same procedure crecpt that on the test the chifd did not have the oppothulty to veriby his conclusion. ADso in the testing situation the objects were screened at the time of the transitive. inference, whereas this was not abway the case in instruction. In the Thansitivity Probeen the child was nequired to camote sets A and B, and sets A and C where A contained two mote
objects than is or C. He then was required to romove leithor physicully or mentrely two objects from the set A to form a not set wich was cquivatent to B and C befone oppeng the transitive property of "as many as", and to conceure that of was couvelent to C. The reasonable conclusion then, is that the treathont impoved the ability of the childien to perform tasks very much tike the treabnent activities, but thes impovemont did not genenolize to the Thansitivity Phobbom, a highen orden task.

These results are consistent with previous transitivity thaining studies. In a study with five- to seven-gode-old chipdren. Smedstumd ${ }^{(1)}$ found that none of the chideren acotired thansitivity of weight due to practice. In another stuth, he (smedskund ${ }^{(2)}$) found that about 30% of a ghoup of cight-ucat-ofd chiedren acquied transitivity of treight be phectice, white ont 12.5% of a contat ghoup acquired thansitivity. Thus, behaviour indicative of thansitivity has been obtanea in some transitivity studies, but it apears to be didficult to intuce thansitivity by practice.

Th apeors from pioget's theory that if a chied's cognitive structure contains the grouping of addetion of asymetricat, transitive refotions, he can use the thensitive property of ani such refations, regardess of concrete embodenent.
(1) Snotblund, J. "The acquisition of transitivity of weioht in fiveto seven-year-old children", Journel of Genetic Psychology, 1963, 102, P. 245-255.
(2) Smedslund, J. "Patterns of experience and the aequisition of concrete transitivity of weight in eight-year-ole children", Scandinavian Journal of Poychology, 1963, 4; P. 251-256.

Piaget ${ }^{(1]}$ has indicated, on the contrary, that a founte stucture of transitivity is not acquired ale at once, but it nutst be reacquired eveu thne a new embodiment is encountered. Sinclair ${ }^{(2)}$ has futher suggested that properties of the concrete embodiments Isuch as dischete or continous) wiel abeet the attainnent of prychologicaley prablet concepes.

In the present study, experiences in Reng, refations were given to introduce an embodinent of the thansitive relations In addetion to the narching relations, but no instruction was given in transitivity of the length relations. The nesults indicate that while tive treatnent impoved the abilty to use thansitivity of matching melations, there was no corcesponting improvenont in the abiecty for the childien so use thabitivity of Lenget retations. Thus. the conclusion was reached that the theatmont wes rather task specific and no generatized schene of thanstivity uns induced.

This conclusion is consistent with piaget's conjectere, and with the resules of thaining studies in consenvathon, For example, Beilin's ${ }^{(1)}$ subjects improved in conservation of number and Rength when experiences wore given. However, the thaining was not subficient to foster generabization to conservation of area." ((22), p. 69-70).
(1) Piaget, J. "The child's conception of number", Routledge and Kegan Paul, 1952, p. 204.
(2) Sinclair, H. "Nunbers and meacurement", in M.F. nosskopf, L.P. Steffe and S. Taback (Eds.) "Piagetian cognitive-development research and mathematics education", Washington, D.C.: National Council of Teachers of Hathematies, 1971.
(Rcilin'e (1) overleaf)

But the investigation by D.T. Owens outlined above does not provide conclusive evidence that transitivity of matching relations necessarily precedes transitivity of length relations, and this is duiy acknowledged.
"These data gave no indication that, for the subjects in this study, the ability to use the transitive property in one relational category consistently preceded the ability to use the thonsitive property in the other relationat category." ((22), p. 69).

(b) Commentaries based on Piaget's work

The last of Owen's statements quoted above seems to contradict the general tenor of observations on the order of emergence of transitive relations that are to be found in a number of commentaries written in the late 1960s, and which are based on the work of the Geneva sehool. Typical of euch commentarics ere Chapters 1-8 of mpimary liathematice Today" by E.M. Hilliams and H. Shuard (25) as the introduction indicates:
"The book begins with a chied's birst expertences of objects and events, and thaces the prowth of mitheraticas itieas in the light of the findings of research workers like Piaget who have studied the develoment of chiedsen's thenking." ((25), P. 2$).$

In fect, Chapter 2 is devoted to a sumary of the stages of growth identified by Piaget and his associates, and all references to aspects of concept developnent discussed in theso eight chapters lead to one of the following books:
(1) Beilin, it. "Learning and operational convergonce in logical thought development", Journal fo Experimental Child Psychology, 1965, 2, P. 317-3.39.

Piaget. 3. 2 Inhelder, B. "The Child's Conception of Snace"
Piaget, J. "logic and Poychology"
Inhelder, D. \& Piaget, 3. "The Early Grouth of Logic in the Child"
Piaget, J. "The Child's Conception of Numer"
Piaget, J., Inhelder, D. k Szomenska, A. "The Child's Conception of Gconctry".

But in order to geuge the extent of the contradiction between Owen's statement and the conclusions that can be dram on the order of emergence of transitive relations from this source, wo require an appropriately deduced sequence of such conclusions. Let us therefore consider the following set of quotations: "A retation thich chitedren recognter at a vory carty age is that of 'biggor thon' Dt "smaten than'* (p. 36).
". . . serietion depends on using the relation 'biggen' (on smolen) to connect each successive pabi ob things in a sequence. Such telations can atso be added. If one tin is taeten than anothen, and the second tin is takfen than a thitd, then the child putting the two relations togethet, will be abre so sall that the finst tin is

(Height) on (if appropriate)
** is Longen than *"
(Length)
". Es taker than : "
"At the preapotational stage a child is unable to hold in nind more shan one relation at a time, so that he is tunabe to compare, for instance, the
capacities of two jugs wich differ in width as wele as in height, . . At a later stage he is able to take into account at the same time both the greater height and the sratlen base, and so to recognize that the vorure is unctered by the charge in its shape. This grasp of the logical raltiplication of relations is a characteristic of the concreteoperational stage of thinking."(p. 36)
"The ondering of weights is more disficult than forming a sequence of sets, iengths or capacities, since each

```
". . holds moke than . ."
    (Capacity)
or
". . takes up more space
    than .."
    (Volume)
    |ater
    still
    ". . is heavier than . ."
        (Weight)
```

pair must be balanced until the correct
ordering is bound." ($p, 42$).

He pbtain

where 'volume' is associated with the 'amount of material in the solid object' and 'capacity' is associated with the 'space inside a container'.

Clearly, order in the acquisition of transitivity with different physical quantities is implied by these quotations. Hence, Owen's statenent does conflict with the overall trend implied by the quotations from "primary Mathematics Today". Dut on taking into account the specific context of Oven's statement, namely, the relationship between transitivity of matching and length relations, we see that no contradiction has in fact occurred because of the coarseness of the framewark that we were able to set up from the quotations used. Clearly, nore information is required to close these gaps.

Fortunately, there has been a dramatic Piagetian renaissance in mathenatics educetion in the United States during the past decade. This stems from the recognition that Piaget's theory and date were not generated by researchers primarily interested in the esteblishment of scientific pedagogy, so that it cannot bo indiscriminately applied in the hope that, somehow, such application will improve the state of affairs in mathomatice education. However, the Americans are assuming that applications of cognitive-developnent can be made to mathenatics education in which learning-instructional models can be formulated and tested apirically, on the understanding that such a model may not attain the statue of a theory, but that it can be used to describe and proscribe learning-instructional phenomena concerning nathematice until it proves unusable in terms of desired objoctives and/or learning process. It is ageinst this background that the studies undertaken by D.C. Johmson (12), Lesh (19), Owens (22) and Carpenter (24), which have already contributed to the discussion in this section, and those of Steffe and Carey (26) and M.L. Johnson (27), should be viewed.

On referring to Appendix 2c, we see that four of these six studies have involved trancitivity. The results of the investigation by D.T. Owens

Which relate to this property have already been considered. It remains to consider the contribution of the studies by D.C. Johncon (12), Steffe and Carey (26) and H.L, Johneon (27), to our knowledge of transitivity.
(iii) The contribution of the studies by D.C. Johnson, Steffe and Carey, and M.L. Johncon

The study by D.C. Johnson (12) was designed to include the following purpose:
to investigate that if specific instructional conditions improve abilities to
(a) form clasees
(b) establish selected equivalence or order rolations whether tronsfer occurs to the transitive property of the selected equivalence and order relations.

Hence, activities were designed to define operationally the relations "more than", "foter than" and "as many as". The equivelence relations "same shape as" and "same colour se" vere also included in the invertigation.

The results showed that the instructional activities produced a positive transfer to the trancitive property of the equivalence and order relations used in the study. But this was attributed to clarity of language rather than to usage of the transitive property as the itens based on the relations of shope and colour contributed greatly to the rather high mean scores of the Transitivity Test (TR). (See Appendix 2c). Mean scores for control and experimental groups on matching relations were 30° and 55% respectively, whereas the anelogous means for the shape and colour relations were 86% and 97% respectively. Although it was noted that
". . relations such as "same shape as" and "same colour as" and the transitive property of these relations were vert easy even for kindergortenors. Very little, if ant, instuction is required in kindergarten for such relotions." ((12), p. 143),
no attempt was made to relate this to possible differences in nature between the concepts underlying the equivalence relations "same shape as", "same colour as" and "as many as". For Lesh (19) has in fact identified at least two subcategories within the class of concepts: "An example of the first of these types is the concept of "red". This tupe of concept muy be referred to as a concrete concept since all of the infonntion that is necessary in order to distinguish instances from noninstances is directly given in the preceptuat field. Another tupe of concept maty be referted to as an operational concept in that it involves abstractions, not just from directly perceived properties of objects, but also from relations between objects, or from operations lon thansfomations) that are perforned on objects (Piaget, 1971, p. 26$)^{(1)}$: ((19), p. 95).

These definitions reveal a fundamental difference in the methods required to teach concrete concepte and operational concepts. In order to teach a concept such as "red" or "triangle", the child can simply be shown examples and counterexamles of red or trianguler objects, whereas in ordor to give a child an intuitive understanding of the relation "as many es" or "same length as", the situation is not so simple.
(1) Piaget, 3. "Science of education and the paychalogy of the child", translated by D. Coltman, New York: Viking, 1971.

The complexity of developing an intuitive understanding of the length relations "same length se", "Ionger than" and "shorter than" is discussed in the introduction to the study undertakon by Steffe and Carey (26). Here they establish a case to justify the following point of view:
"Before presenting length relations to childten below six
years of age, it seems necessanty then, to define the
relotions on a basis that does not assume number. Such a
definkeion foleus. Let A, E and C be segments. A is
the sane length as E , if and only it when segmente lor
their transtormsl tie on a line in such a woy that two
endpoints coincide (left or right), the two remaining
endpoints coincide. A is Eonger than is it and onty if
the remaning endpoint of B coincides with a point between
the endpoints of A. Also in this case, E is shoter than A." ((26), p. 20),
and the operational counterpart of this definition was used as a basis for the instructional sequence designed to develop the ability of children to establish a length relation between two curves.

Concerning the main investigation we find that one of the questions asked of four- and five-year-old children after formal instruction on
(i) establishing length relations only,
(ii) establishing length relations, conserving length relations and using properties and consequences of length reletions,
was
Are children able to use the transitive property of length relations?

In the discussion of results which relate to this guestion, we find
"Fev five-yecuraid children were able to use the transitive property after only insinuctional experience in estabieising length relations. At this point in time, only 165 of the feve-tear-olds used the transirive phoperty. At the same point in tine the distribution of total scones for the four-year-opds did not statisticeloy depart from a binomiat distribution bosed on tandon responses. so no four-yeat-otd uns considenef able to use the thansitive phoperty of ength relations. Some chitetren perforned poorly because of their inability to establish the two indial comarisons, an inability Snedslund $(1903)^{(1]}$ considers as a reason for foilure of sone goung childhen to use the transitive Moperty.

Instuctionat sequences II and III (desioned to develop the ability of children to use the reflexive and nonreflexive* properties; to conserve length relations, use the asymetric property and logicel coneequences respectively), dit increase the abieity of five-tearmolds to use the tronstetue phoperty. since the percent of five-geot-alds able to use the thansitive properth increased to 37. These same expeniences did not increase the abitity of four-teat-ofd chithen to we the transitive property because again the distribution of totat scores for the four-year-olds did hot statisticolly depatt from a binomiat distribution based on guessing. The number of five-year-olds that used thansitivity of length relations

* For 'nonreflexive' read 'antireflexive' - see footnote on page 31.
(1)

Smedslund, J. "Development of concrete transitivity of length in children", Child Development, 1963, 34, p. 389-405.
is below that found by Braine ${ }^{(1)}$ but above that found by Smedslund $(1964)^{(2)}$. It appears that these experiences were not lonicat-mathenatical exporiences that neodily inctease chiedren's abikity to use the intasitive property. Ael the childien mat not lave had a mental structure subficient to allow assimilation of the intomation. The mean Verbat haturity and 1.2. of five-ifar-otd chitdren who were abie to use the thanstive properte appeared to be sightly ingher than for those who do not use this property. However, the cotrelations between these tho variabees and transitivity scores canned by the torat sample was not staristicafly dibferent fron zero. Also, there appeans to be little, if any, relationship betucen the variables Age and Social chass and the ability of dow-and five-pean-ald children to use the iransitive properth." ((26), p. 41-42).

These results can be used to argue that there is no case at all for attempting any instruction using similar populations with a viow to improving the use of the transitive property of length relations before five years of age. Moreover, this line of arqument is consistent with the vieus of Beth and Piaget (1966) ${ }^{(3)}$, who point out that although seriation behaviour can be found in children fron the sensorymotor
(1) Braine, W.D.S. "The ontogeny of certain logical operations: Piaget's formulation exanined by nonverbal methods", Psychological Monographs: General and Applicd, 1959, 73, (5, Whole No. 475).
(2) Smedslund, 3. "Concrete reasoning: A study of intelloctual development", Monographa of the Society for Researeh in Child Development, 1964, O (Serial No, 93).
(3) Beth, E.W. and Piaget, J. Mathenatical epistenology and psychology", Dordrecht-llolland: D. Feidel, 1966.
atage onvards, it is only when seriation becones 'operatinnal'* at about eight years of age that trancitivity emerges. (See also the translation of (16), 1. 153 on page 38 of this section.)

Howner, concem over
(i) the lack of infomation on the relationchip which may exist between seriation ability and properties of order reletions; and
(ii) the gmall anount of research reported in which training procedures were used in an attompt to faciJitate seriation ability,

1ed M.L. Johnson (27) to investigate

1. the influence of training on the ability of first and second grade children to classiy and scriate objects on the besis of length,
2. the influence of such training on the child's ability to conserve and use the transitive propertios of the relations "sano length as", "longer then" and "shorter than".

Additional objectives included an investigation of the relationship between the child's ability to use the trancitive property of the relations "longer than" and "ehorter then" and has dility to seriate on the bacis of these relations; and to determine if the ability to serinte linear objecta wes naterial opecific or relational enecific.

In the discusetion of the results an important question omergos:
"The extent of the subjects' seriation ability, in tems
of being operationol in a piagetion sense, mat be questioned when one considers the overate parformace on

[^5]the transttivity tost. In particuter, the troathent (i.e. training in classification and seriation on the basis of Iength) appears to hwe fad no effect on the children's chilith to use the transitive property of the order relations involved in this studty. In bact, no signibicant relationshay could be detected betveen transitivity of "Xonger than" and "Shorter than" and the ability to seriote using these relations. Thes finding is not consistent aith the hypothesis presented by Eeth and piaget $(1060)^{(1)}$ and confined by Ekind $(1964)^{(2)}$ that thansitivity is nocessanily present when a child exhibets behaviour characterized as stage thee seriation behaviout. The question is raised concenning what is 'operationat' seriation behrviour. In this studt, chirdren were able to soriate sitings and stichs, as well as insert additionte sticks into a series abteady fotmed without ant trouble but could not use the thansitive proporty of "Ronger thon". Such responses woud indicate that the seriation training was successifu in thaning the childen to we an algorithat wich wis not part of an operational schene. It thes was the case, te wout be expecied that the relationsity
(1) Deth, E.H. i Piaget, J. Whathematical epistemology and psychology", Dordrecht-Holland: D. Reidel, 1966.
(2) Elkind, D. Diserimination, seriation and numeration of size and dimensional differences in young children: Pioget replication study VI", Journal of Genetic Paychology, 1984, 104; P. 275-296.
between seriation and thansitivety woud be negedgibec. If hovever, the chidien were non 'operationt' then these findings sugest that conthary to Piaget's hyothesis. seriation behaviok does not necessuriby imply transitivity. In any case, it is cleor that we need additionat guidelines as to what constitutes operationat behavior and more cofective watys of measuring such bothoior." ((27), p. 90-91)

To suggest that a more precise study of the relationship between seriation and transitivity will resolve the possible contradiction between Beth and Piaget's hypothesis and the results of this study, is an easy option to take. It is in offect no more than an indication that someone else should tackle the problem as the proposer of this suggestion has been unable to find possible reasons for the apparent contradiction.

Let us therefore attempt the more difficult option: to identify pessible flavs in the components of the arguments and to suggest appropriaie modifications.
(iv) The identification and modification of points of veakness in the hypothesis: seriation inplies transitivity

As it stands the hypothesis presented by Beth and Piaget (1966), namely,
transitivity is necessarily present then a child exhibits behaviour characterized as etage three seriation behaviour
is cloarly false then transitivity is defined as follows:
The relation f on a set S is TRANSITIVE if, whenever x hy and $y R z$, then $x R z$, for all $x, y, z \in S$.

For this definition covers not only the cases where the set S contains
three dietinct elenonts x, y, z, only, but also the cases where
(i) x, y, z may be just three distinct elenents of the set S Which contains nore than three distinct elements
(ii) x, y, z need not be distinct elenents of the set s,
and we note that none of the investigations discussed in this section cover any of the opecial cases thich occur undor (ii). Nor have we found any evidence which suggests that Beth and Piaget took account of these special cases before their bypothesis was precented. Thus; we can argue that the core operation for grouping V as interpreted by Beth and Pigget and invertigated by these studies, is restrictectransitivity which we now define as follows:

A rolation R in a set S has restricted-transitivity if whenever
xRy and yRz, with x, y, z, all distinct, then $x R z(x, y, z \in S)$. At thic point we also note that this definition of restrictedtrancitivity containe at least two levels of applicatione:

Level I: when the set 5 contains three distinct elenents

$$
x, y, z \text { only, }
$$

Level II: when the set 5 contains more than three distinct clements,
for all of the studien discussed in detail in Sections 2.5 (i)-(iii) except Carpenter's, were concerned with Level I. The extent to which a child was able to apply restricted-transitivity to situations involving four (or more) cubical parcels, four (or more) sticke, or four (or more) collections, was not included in these studies.

It is therefore suggested that the first modification of Beth and Piaget's rypothesis ohould be

Restricted-transitivity (Levol I) in necessarily present when a child exhibits beheviour characterized as atage three seriation
behaviour.

But the argument which led to the above amendment did not take into account the fact that on establishing

"heavier than"	"lighter than"	"same weight as"
"longer than"	"shorter than"	"same length as"
"more than"	"fewer than"	"as many as"
		"gane colour as"
		"same shape as"

on the appropriate triples, ALL these relations give rise to instences of restricted-transitivity (Level i). If, therefore, we attempt to apply the strict criterion for concept attainment suggested by Leoh (19), namely
"h concept has been attained when the chied can within a given universe of exporience, distinguish instances fron noninstances of the concept." ((19), p. 95),
within the context of the weight, length or matching relatione, we have, for example

Restricted-transitivity (Level I) has been attained when the child can, with respect to length relations, distinguish instances frem noninstances of reotricted-transitivity (Level I), which is impossible. Only by extending the universe of experience to noninctances, f.e. to relations such as "lives next door to", on on appropriate triple of persons, can we ensure concept attainnent of restricted-trensitivity (Level I).

Unfortunately, none of the relevant investigations discussed in thio section presented any evidence that such counterexamplos had been taken into consideration. it sems to be the case that all of these studies involved situations in which it was impossible for tho child
to attain the concept of restrictect-transitivity (Level I) as specified above. If so, then not even the first modification of Beth and Piaget's hypothesee was being tested by K.L. Johnson (27), and so "Restricted-trensitivity (Level I)" must nou be deleted from the modification.

Thus we see that she second modification of Beth and Piaget's hypothesis chould take the following form:
\qquad is necessarily present when a child exhibits
behaviour characterized as stage three soriation behaviour.

But now the quostion arises ae to what should fill the gop left by the deletion of "Reotricted-trancikivity (Level I)".

Remembering that identification of bohavioural counterparts of one or other differontioting component of a given grouping was a major factor in the design of Piaget's experimentr, is it possible that "the bohavioural counterpart of restricted-trancitivity (Level I)" is the required gap-filler?

If this is the cage, then there is a plausible argument which accounts for the discrepancies such as
". . . chiedren were able to seriate strings and sticks
as weel as insert addetional sticks into a series atheaty
fonned without aw troube but could not use the
thansitive property of "Ronger than"." ((27), p. 91), Where wo interpret "uce the transitive property of "longer than" to mean "use reetricted-transitivity (Lovel I) of longer than". The argunent is that the acquisition and uso of the behavioural counterpart of restricted-transitivity (Level I) is analogous to the ecquisition of an unconscious habit or to perfectly correct use of
gramar by a young child, in that the acquisition and use of the behavioural counterpart of reatricted-trensitivity (Level J) occure before the child is explicitly amare of and can verbalize his analysis of the operations and relatione that are inplicit in his serintion activities. In addition, we aleo note that restricted-trancitivity (Lovel I) is formulated as an implication and the proper use of an inplication is more then the enunciation of ideas in sequence.

Thus, on the basis of the above discussion, it is proposed that the hypothesie underlying experinents to follow the question raised by M, L. Jolneon, should be

The behavioural counterpart of restricted-trancitivity (Level I) is necessarily present when a child exhibits behaviour characterized as stage three teriation beheviour, for the decision to take stage three seriation behavicur as the actual behavicural counterpart of restricted-trancitivity (Level I) must be left to the educational psychologists. But until a decision is made on this point, eny attempt to reduild a framevork wich takes into account the levele of epplication of trensitivity considered above, will be incomplete.

2.6. Grouping VI

(i) Piaget's symotry studies

On turning our attention to grouping VI, we find that "There is vory little direet experinentar evidence on whis grouving. What there is concerns amost exclusively the acquisition of the symnetur property of symetrical refations. . ." ((14), p. 194).

This coment is still applicable, but during his pre-1930 studies, Piaget did ehow that children in the preperational subperiod of
development tend not to see the symmetry wich may or may not exist in relations such as " . . is the brother of . . ", ". . is the enemy of . .", and so on.

For example, in "Judgement and Reasoning in the Child", first published in 1928 by Harcourt Brace, Now York, we find an experiment based on finding the absurdity in each of five absurd sentences drawn from the Binet-Simon intelligence test (1917), which included the sentence I have three brothers: Paul, Enest and myself (Tester: Hale) sisters: Pauline, Jeanne k myself (Tester: Female) Unfortunately, this sentence highlights the conflict that existe between a possible logicel interpretation of the word "brother" as "male and has the same parents ae" which produces a reflexive relation (any male has the sane parents ae himself), on a set of men or boys, and colloguial usage in which a male cannot be his own brother. Thus, colloquial usage gives rise to an antireflexive relation on a oet of men or boys, and hence to an abcurdity in the bove sentence, whereas the bove logical interpretation of "brother" does not. However, the purport of the above sentence wae interpreted by Plaget as follaws: The thee brothers test requires that the child shoutd find a contadickion betwen the existence of three brothors in one fonily (Paul, Ernest and nuserf) and the proposed gudgenent "I hove thee brothers, (Paut, Enest and nuselil." ((28), p. 74).

It is therefore against colloquial usage that the following analyois of results should be judged.

Piaget found that of the 44 boys aged 9 to 12 years and 3 aged 14 , only 13 succeeded in finding the absurdity. For the 72% who did not succeed, sone failed because they did not vion "ryself" (i.e. the
nale tector) as a brother to Paul and Ernest, although they readily asserted that Paul and Ennest are the brothers of "nyself". Thus, for these boys, the total number of "orothers" in the fomily is two: Paul and Emest. And from Piaget's point of view, this meant that these boys had found the "wrong abourdity". 0ther boys aesinilated the relational "I have" into a classificatory "there are" in the eentence and so found nothing abourd about it. Thore wos alco a third group of boye for which differentiation and coordination between relational and classificatory "brother" wae made but not sustained throughout their reasoning.

From thege observations Pieget argues that the various types of incorrect enstrers given by the boys, indicates
(i) their inability to differentiate between two pointe of vien
(a) that of "bsother" as a SET with set nembers ("we are three brothers", "I am a brother", etc)
(b) that of "brother" as a RELATION between individuale ("I have three brothers", "he is my brother", etc) and more generally
(ii) their difficulty in handling relations ats opposed to sets.

Sut this preliminary study of the brother concept was in fact followed up by a eecond, larger-scale investigotion in which about 240 children aged 4 to 12 years were asked the following set of questions:
"1. How may brothers have you? And how muy sisters?
Let us suppose that the child has a brother A and C. sister $B .1$

And how many brothers has A? And how maw sistens?
Ant how muy brothers has B? And how mow sistere?
2. How mant brothers are there in the fantly?

How nony sisters?
How many brothous and sistens aktogetion?
3. There are thee brothens in a fanily: Auguste, Alfred and Rafnond. How muny brothers has Ruguste? And Athed? And Raymond?
4. Are you a brothen? fotat is a brother?
sistoh? sister?
5. Enest has three brothers, Paul, Henty and Chares. How many brothers has Paul? And Henu? And Chorles?
6. How may brothers are there in the fontul" $\| 28 \mid$, p. $98 \mid$

In this second investigation the principal findings were as indicated below:

Table shoring the age when at least 75\% of the children in that age groun answered the question correctly

Age	N0. of the guention(s) ansuered correctly					
4	-					
5	-					
6	2					
7	2					
8	2,	3				
9	2,	3.	4			
10	1,	2,	3,	4,	5,	6
11	1,	2,	3,	4.	5.	6
12	1,	2,	3.	4.	5.	6

Question 1: Children had difficulty in seeing thenselves as brothers or cisters of their own siblinge. The extent of their difficulty is indicated by the following table which show the percentage of right ancwers given by the
different age groups
Yeare: $\quad 4-5 \quad 6-7 \quad 8-9 \quad 10-11 \quad 12$
Percentage: 10\% 24\% 55% 37% 100\%

Guestion 2: Some children also had trouble including themselves in the total numer of brothers and sisters in their fomily. However, the success rate of 75% achieved at 6 years of age when compared vith the resulte obtained for Question 1, suggest that "the chith has for oftener had occasion to tabe th the point of view of his fonily as a whole than that of eant one of his brothous and sisters." ((28), p. 101)

Questions 3, 5 and 6:
The difficulties highlighted by Questions 1 and 2 were eugmented then parallel questions were asked about a hypothetical family, Question 3, however, was easier for nost of the children than either question 1 or Question 5 . Pianet suggests that the explanation for this is "In the case of test 1 the child has more dinicuety in entering into the point of view of his biothets than into that of the three brothers of test 3, bectuse in the case of his om fonily it is not enough for him to enter inwo the point of view of others, he must elso Look at himsed from the point of vien of okhens, which is tuice as difucute. Now in tost 5 the child is placed sthaight ataly ot the mivileged point of viow, that of Enest. The difficult is therefore analogous in a sense to that of test 3. These considerations explain why test 3, which does not involue these
pecutiar difucueties, is found to be easien than test 1." ((29), p. 103).

Second half An interesting sequence of responses emerged:
of Question
4: (i.e. the
question
calling for
definition
of the word
'brother' or 'sister'.)

Stage 1: The most primitive definition simply states that a boy is a brother. e.g. "Lo lage 5): "A sister is a gire you bnow."

- "Anc ab the gires you bnow sisters?"
- "Yes, and ale the boys are brothers."
((20), p. 104).
Stage 2: The child realizes that there must be two or more children in the fomily in order to call one of them a brother, but the concept is not yet genuinely relational for the child does not assign the title to all the appropriate children.
e.g. "hod lage 91: "bhen thene is a boy and anothon boy, when there we two of thent"
- "hos gour father got a brother?"
- "yes".
- "thuq"
- "Because he was born second."
- "Then what is a brothen?"
- "It is the second brother that comes".
- "Then the first is not a brother?"
- "oh no. The second brother that. comes is called brother".

Piaget comments: "It would be impossibfe to show more cleanty the absence of relativity from the wond

'brother'."

($(28), \mathrm{p} \cdot 105)$.
Stage 3: The child was able to give a definition which implies the idea that there must be at least two in the seme family for there to be a brother or sister, and which includes a fair to good grosp of the relational meaning of the yord.
e.g. "UL lage 73 1 : "A brother is . ."

- "a boy"
- "Mre all boys brothens?"
- "yes"
- "Is a bot who is the only one th the fanily a brother?"
- " 40 F
- "Why we you a brothen?"
- "Ecause I have sisters"
- "An I a brother?"
- "No"
- "How do you knows"
- "becuse you are a natr."
- "itas gous father got brothoss?"
- "yes"
- "Is he a brotherf"
- "Yes"
- "wher"
- "Because he hod a brother when he mas eittle."
- "Tell ne what a brother is."
- "han there ore severod chiedren in
N.B. According to Piaget's date nbout 60\% of 7-year-olds and 75% of $9-y e a r-0 l d s$ were able to give "correct" (i.e. Stage 3 type) definitions.

Thus we see that the above analysis of responses to Question 4 supports the conjecture:

The sementic features that are more general, more central to the meaning of the word are acquired first,
with respect to the word 'brother' (or 'sister'). This evidence also implies that the features associated with the colloquial use of the word 'brother' are acquired as follows:

```
male and not adult
                                    \(\Rightarrow\) Stage 1.
        \(\int \mid+(\) later \()\)
implies more than one in
the sane generation but
the title is not assigned
to all the children where
appropriate \(\longrightarrow\) 5tage 2.
    + (later still)
if a boy has a brother;
then he is a brother also
(i.e. the symmetric aspect
of the definition) \(\longrightarrow\) Stege 3.
```


(ii) Confirmation of these results by Danzicer

A parallel set of results was also obtained by k. Danziger (29) in an investigation conducted with 41 Australian children (20 boys, 21 girls) between the eges of 5 and 8 .
"In order to study the develoment of the materstanding of relational tetrs a group of Austration chitiren betwect the ages of five and eight were ashed to give definitions of a maber of binshiy torms ine brother, sister. dougher, uncle, cousin. They were also ashed a series of questions tefotho to the twe of each tem. The findings indicate a clear separation between two conceptuat revels with show a correlation with age. At the first level, the terns are used atributively and do nor inpy a relationship, while at the second Revel they are used relationally. Further, utwo distinct fevels in the retational use of these terms appoared. At the lower Level the tern expresses a nelationship that is both conctete and isolated, while at the hioher Revel the refationsinip is linted with others to fon a systen and its definition derives from its position in thes system. The kinship tem is now defined in a generat way."
((29), p. 231).

(iii) Exiticue of the above studies

Unfortunately, these investigations by Piaget and Danziger not only ignore the possibility of children interpreting the word 'brother' in its logical form (sce page 67) but they do not take into account the possible application of a previously encountered relational property which could be influencing the type of response nade by some of the children to the questions used. This second relational property is restricted-transitivity.

In section 2.5 (iv), the term restricted-trancitivity was deliberately chosen because the children who were able to make the transitive
inference in the studies discussed, had been warking with concrete enbodiments in which a, b and c were distinct. These children had yet to encounter the irpact on their understanding resulting from the application of the definition of transitivity (see page 23) to situations sumbarized by the following:

Consider a relation R on a set, and a pair of elements $\{a, b\}$ such that apb and bla are true.

If R is transitive, thie entails the truth of aRa elso, for as anb and bRa then we must have ara.

Similarly, bRb is true also, since bRe and afb implies bRo.
Hence, within a transitive relation, any two elements of a pair such
as $\{a, b\}$ for which apb and bRa are true, must be elements for which aRo and bRb are also true.

For these children "transitivity" meant "if aRb and bRc, then aRe where a, b and c are distinct".

Let us therefore consider some of the possibilities associated with the emergence of restricted-transitivity.

Suppose the experimenter follows up a correct response to Quection 3 , with supplementary questione such as

Is Raymond the brother of Alfred? Is Alfred the brother of Auguste?
Is Raymond the brether of Auguste?
What else can you tell we obout another family when I tell you that
Robert is the brother of David and David is the brother of Paul?, evidence could be ontained about this additional aspect.

However, ovaluation of the responses given to these questions will require care. For example, let us suppose that as 75% of the children aged 8 and uphards gave correct, ansvers to Question 3, that Hal (aged 9)
was one of thea. The two responses
"Because he was bom second"
and
"It is tho second that comes":
that hal gave in response to Question 4 (see page 71), suggest that the additional relation ". . is younger than . " is associated with his interpretation of the word 'brother'. If this is so, the order of the names in Duestion 3 (i.e. Aupuste, Alfred, faymond) could be taken by Hal as information on the order of birth so that
"Is Raytond the brother of Nlfrod?"
is interpreted as
"Ie Raymond younger than Alfred?"
etc, With this mental set in pperation, Hal's response
"Robert is the brotion of Faul".
really meane
"Robert is younger than Paul".

But even when contanination by an additional relation such as ". . is younger than . ." has been eliminated, the reoponse "Robert is the brother of Paul" does not provide conclusive evidence on the child's ability to use restricted-transitivity in cimilar siturtions. This response is concemed with a situation in which the child ik outside the family under consideration. Where appropriate, the child's ability to ues restricted-transitivity with respect to his oun fomily should also be tested. The evidence collected when the child is part of the fanily under consideration could show what effect, if any
(i) the size and composition of the fanily
(ii) hic position in the fomily
has on this ability. Furthernore, if as Pinget suggests, it is twice as difficult for the child to see his family from the point of vieu of
his own siblings and to look at himself from their point of view also, there is the poosibility that a child will be oble to analyee correctly the restricted-transitivity in a hypothotical family, but that he will be unable to transfer and extend this analyais to his own family. Hence, the following stages in a child's ability to hendle restrictectransitivity seem possible:

Restricted transitivity	Hypothetical family	Own femily
Stage A	x	x
Stage 0	$/$	x
Stage C	$/$	$/$

Note that it is alco poscible that the child's response to the quection

That else can you tell me about another family when I tell you
that Robert is the brother of David and David is the brother of Paul?
could also provide additional evidence on the child's capacity to grasp the symmetry in the move situation. This in turn could lead to the confimation (or rejection) of a parallel set of stages in the child's capacity to grasp symetry which is implied by Piaget's suggestion.

But whether or not it is confirmed that the stages A - C outlined above occur for both restricted-transitivity and symetry, tuections concerning the extent of the interactions between these two properties remain. For example, is it true that both proporties energe together, resulting in confusion in arguments used by the child, as first one and then the other dominates his thinking at a particular moment? Answers to this question and others which highlight the nature of the interection between restricted-trensitivity and symnetry are required before we can complete the evidence on the order of acquisition of the features

```
associated with the colloquial use of the word 'brother'. In other
words, the poscibility that
    the child is dhle to see his
    om family front tho point of
    viow of his om siblings and }====
    to look at himeolf from their
    point of vien
                                the child is oble to uge
                                    rostricted-transitivity
                                    and symmety os appropriate
                                    With confidence,
requires furthor investigation.
```

Thus we see that on reviewing an examie of
". . one of Piaget's favourites for this grouping: the symetrical relations found within a genealogical hicacroly." ((14), p. 182),
we find that symetry alone is not necessarily the only relational property that could be in use with relations such as
. . is the brether (sister) of . .

- . is the cousin of . .
- . has the sane grandfather as . .
on the appropriate sete. Horeover, when we also toke into consideration
(i) the differencee between the logical and colloguial interpretations of the word 'brother' (or 'sister'),
(ii) the difficulties surrounding the comprehension of secondary kinship terns such as cousin, nephew, ete, experienced by nost T-year-olds, because these words involve more senantic Featuree and are thus more complex,
the suitability of these relations for otudying the chile's capacity to grasp 'symatry' is euspect. It is therefore sonewhat surprising to find the following in "Checking Up III".

We now focus on the spmetric property. Relations established between the memers of a farily provide intoresting situations for chech-ups. . . . The relation 'p is the sester of q^{\prime} in an all-gith family is stmmetnic, as would be ' x is the brother of y^{\prime} in a fontly of bogs. If we consider the cheldren of several browhers and sisters, the relation'm is the cousin of n ' is symetric when considering both boys and gircs." ((23), p. 29), when on the facing page we find the quotation olready given on page 37, namely;
"It is suggested that the teacher should first see how the child grasps each of these properties indepententiy of the others, in situations where they can be cleanty illusthated."

In order to eliminate the objections raised above, we reguire a relation in a set which is
(i) symnetric
(ii) either antireflexive (i.e. ale never oceurs) or nonreflexive (i.e. tha does not occur for all a)
(iii) non-trancitive,
and which is within the child's everyday experience. Let us therefore consider experimental situations involving a set of three (or four) Action-han typo dolls and the relation ". . is wearing a different coloured shirt from . .".
(iv) Proposale for further testo - to clarify the stages in the development of symetry

Materials required: Four Action-Han type dolls Six shirts ($3 \mathrm{red}, 2$ blue, 1 yellow)

A emall suitcase or box, which represents the dolls' house.

At the start of each sequence of tests the child is given the following information:

Foux dolls called John, Paul, Devid and Robert want to play a new gene with us. Here are their rules:

1. Sometimes only three solle will play in a round of the geme; sometines all four dolle will pley in a round.
2. The dolls are not allowed to tell us all of their nomes. Instead, we are allowed to look et their neme-1abele. This is to holp us to romemer which dolis are playing in a particular round of the gane.
3. The dolls are allowed to toll ue soncthing obout the shires they are wearing. They want to see if wo cen tell which doll has which name from whet they tell us ebout their shirts.
4. We are allofed to pin the name-label on a doll then we are sure we know the doll's name.
5. After each round of the gane all of the dolle are alloved to go into their houpe so that sone of then cen change their shirte for the noxt round of the game."

Before comencing the test sequence, the experimenter must check that the child sees the same colour similarities and differencas as the experimenter, so it is suggested that the introductory dinlogue continues with

Here aro the four dolls who will be playing the game and all of the shirte they will be wearing."
(Experinenter displays four dressed dolls plus two extra shirts).
"Show me a red shirt? Wat are the colours of the other chirts here?"

Test A: (Three Bolle - Joln, Paul and David) Two of the tolls are wearing red shirte and one is wearing a blue chirt.
(ked) John \quad (ied) The experimenter picks up a doll woaring a red - \quad shirt and astes the following eequence of (6Eue) guentions:

Question $1(\mathrm{a})$: This is John. (Experimenter attaches John label and epreads out the other two Jabels.) John is wearing a different coloured shirt from Paul. Thich doll is called Paul?

Quection 2: Is there another doll wearing a different coloured shirt from Paul?

If the child oays "Yoo", ask
Quostion 3: What is his name?
Question 4: Are John and David wearing shirte which are the seme colour or are they different?
N.E.

As a prelininary to Teat B whon given on a eeparate occasion, Teat A can be ropeted with guestion 1(a) replaced by
yuestion 1(b): This is John. (Experimenter attaches John Tabel and spreads out the other two labels.) Paul is wearing a different coloured shirt from John. Which doll is coller Paul?

Differences in the longth of tho hesitation (if eny) before anowering Gueations $1(\mathrm{c})$ and $1(\mathrm{~b})$ will give some indication ac to which of the two possible ways of using this rolation tho child finds easiest to handio.

Tect B: (Four dolls - Jom, Paul, David and Pobert)
Three of the dolls are wearing red chirts and ono is vearing a bluo shirt.
Join (red) (red) The experimenter picke up a doll wearing a red

- - chixt and asko the following soquenca of (biue) (red) guestions:

Guestion 1: This is John. (Exporimenter attaches Joh label and spreads out the other three labels.) He is wearing a different coloured shirt fron David. Which doll is called David?

Quegtion 2: Is David woaring a different coloured shirt fron Paul?
If the child says "Yes" ack:
Luestion 3: Tell mo the nemes of two dolls that are wearing dirforent coloured shirts. Can you tell me the names of another wo dolls tho are wearing different coloured shirto?

Test C: (Four dolle - John, Paul, David and Robert)
Thee of the dolle are wearing red shirte and ono is wearing a blue chirt.

vavid

(red) (red) The expeximenter picks up a doll wearing a red

- Thirt and says:
(biue) This is David (experimenter attaches David
label) and this is Poul. (Experimenter attaches Paul label and spreado out the other two labels.) I an going to say the names of two dolle and I want you to tell me whother their chirte are the cane colour or whether they are different:

1. Dovid and Paul
2. John and Paul
3. David and John
4. Peul and Robert
5. Robert and David
6. John and Robert

Tegt D: (Four dolls - Join, Paul, David and Robert)
Two of the dolls are wearing red ohirts, one is wearing a blue
chirt and one is wearing a yellow shirt.

John

(hed) (bfue) The experimenter picks up a doll wearing a red
-
(yelhow) (red) whirt and acks the following sequence of guestions:

Question 1: This is John. (Experimenter atteches John lebel and cpreads out the other three labels. John is then replaced in the group of four dolls.) John, Paul and David are all wearing different coloured shirts. Will you please put Johm, faul and David sitting together in a group in front of you. Which doll is called Robert?

Question 2: Are Robort and John wearing shirte which are the sane colour or are they different?

Queation 3: Are Robert and Paul wearing ohirts which are the same colour or are they different?

Guestion 4: Are David and Paul wearing shirts which are the sane colour or are they different?

Test E: (Four dolls - Johns Paul, David and Robert) Three of the dolls are wearing red bhiris and one is wearing a blue shirt.

| (hed) (red) The experimonter picks up the doll wearing a | |
| :--- | :--- | :--- |
| (blue) (red) | bue shirt and says: |
| Pat | This is Paul. (Experimenter attaches Paul label |

and spreads out the other three labels.)
I am going to eay the natres of two dolls and I wat you to tell me whether their shirte are the same colour or whether they are differont.

1. Paul and David
2. John and fiobert
3. John and Paul
4. David and Robert

Test F: (Four dolle - John, Paul, David and Robert)
Two of the dolls are wearing red shirts and two of the dolle are weering blue shirts.

3oh (red)	(bque)	The exporinonter picke up a doll wearing a red
-	-	ohist and aske the following sequence of
(beue)	(red)	questions:

Question 1: This is John. (Experimenter aktaches Jom label and spreads out the other three labols.) John is wearing a different coloured shirt fron David. Can we tell which doll is called David?

If the child saye "No", ack:
Guestion 2: Which doll might be called David?
Guostion 3: John is wearing a different coloured shirt from Paul. Are Paul and David wearing shirts which are the came colour or are they different?

Guention 4: Which doll is called Robert?
Question 5: Are the shirte of Paul and Robert the same colour or different?

Teet G: (Three dolle - Jom, Paul and David)

Two of the dolls are wearing red shirte and one is vearing a blue shirt.
(red) Thed) experimonter asks the following guestions:
$(b f u e)$

Question 1: Joh is wearing a different coloured chirt from Peul and Paul is wearing a different coloured shirt from Dovid. Which doll is callod Paul?

Question 2: Are John and David weexing shirts which are the same colour or are they different?

Test 1: (Four dolls - John, Paul Devid and Robert)
Three of the dolls are wearing red shirts ond one is wearing a blue chirt.

(red)	(red)	(a) The experimenter forms two distinct peirs with the four dolls and acks the following
(ned)	$(6 \dot{4}+1$	çuestion:

Question 1: John and Paul are sitting together and Robert and David are sitting together. Robert and David are weering different coloured shirte. Where are the dolls called Robert and David?
(b) The experimenter allowe the four dolle to go to theim 'house' and a red shirt is changed for a blue chirt. The dolls are once agoin pleced in front of the child so that they now form two blue/red pairs, and the questioning continues as follows:

Question 2: John and Paul are sitting together and Robert and David are sitting together. Robert and David are still wearing different coloured shirte. Cen we tell where

Robert and David are sitting?
The experimenter then picke up a toll wearing a blue shirt and ack:

Question 3: This is Robert. (Experimenter attaches Robert label and re-establishes the pair Robert - David). Jusk now one of the dolls changed his shirt from a red one to a blue one. Can you tell me which of the dolle changed his shirt?

Underlying the deaign of the above teste are two basic factors:

1. The relation ". . is wearing a different coloured shirt from - " in the sots of dolle, really does have symetry without being enbodded in an equivalence relation.
2. It is nssumed that the significant stage in the development of symetry is the ability to pick out a pair (or pairs) of dolls without being bothered that you do not know which doll of a solution pair corresponds to x and which to y in $x R y$ or $y R x$. N. 0.

The assumption stated in (2) above is based on the lypothesis thet the subject's ability to disassociate hinself from the need to know which doll corresponds to x and which dell corresponds to y in x y or $y R x$ is an indication that the subject has recomised and cen use the symmetry in the situation as appropriate.

Consefuently, a small pilot study vas undertaken to see whother or not this ascumption was ill-founded. In fact, the questions used in this shall pilot study were desioned to extend the above assumption in the following way:

To see if the subjects' responses indicated the following three stages of develoment.

Stage 1: The child recognizes a pair (x, y) such that " x is wearing a different coloured shirt from $y^{\prime \prime}$, when certain
about both individuals.
Stage 2: The child recognizes a pair (or pairs) (x, y) ouch that " x is vearing a different coloured shirt from y ", when certain ebout one individual only.

Stage 3: The child recognizes a pair (or pairs) (x, y) wuch that " x is wearing a different coloured shirt from y ", when not certain about either individual.
(See fippendix 2 d for the list of questions used and the results of this pilot study.)

The results of the pilot study appeared to support the conjecture that the subjects' responses indicate at least three stages in the development of bymmetry which correspond to the stages apecified above. A review of the tests used was therefore undertaken. This highlighted a number of points of weaknes in the overall design of the itene included, should these itema only be used in a larger scale follow-up study, the purpose of which would be the confirmation or rejection of the existence of these three stages in the development of symmetry. Consequently, additional items which were similar in structure to the thems used in the pilot study were included in the proposals for further teote given at the beginning of this sub-section.

There are two further observations to make about the sequence of tests as proposed. Not all of the questions focus specifically on identifying Stage 1-3 responses. The intention is to incorporate the decisive questions in the context of a more general conversation about the dolle in a perticular situation.

It may be noted also that other Iogical notions may be involved in the child's deductions; notably there may be argunents by elimination.

For example, if wo have three dolls and we know they are John, Paul and David, then there may be arguments of the form
"This is John, that is Peul, so this nust be David." This may be said quite independently of the shirt colours. We have assuned that all chilcren chosen as subjects for an investigation into these stages in the developnent of symetry aro capable of this form of argument, so ous classification of responses does not involve it. This could be a design fault, but at this stage no conclusion can be drawn on this particular point. Similarly, at this stage, no conclusions cen bo drawn on the other points raised in this sub-section. Clearly, furthor development of the test itens is required.

But even if the three otagee outlined above are confirmed there are orill important aspects of the developnent of the concept of symactry which have yet to be taken into account. For example, we need to distinguish botween two levels of xecognition by the child before we say that the concept of a symotric relation is fully developed. These two levels of recognition are

Level A: Given a set of objects x, y, . . . and a relation R (which is symetric, e.g. ". . is vearing a different coloured shirt from . ""), the child recognizes instances of x Ry and $x \neq y$ (where x / y denotes a non-exemplar of the basic relation, e.g. "X is NOT wearing a different coloured shirt from $y^{\prime \prime}$) with respect to Stagee $1-3$.

Level B: Given a set of relations R, S, T, . . . (e.g. ". . is wearing a different coloured shirt from. .". ". . is taller than . .", ". . bame colour as . .", ". . is older than ".", etc) on appropriate sete, the child recomizes inatences and non-instances of relations
which are bymetric.

When at the first level, Lovel A, the child is in the pocition of recognizing whether peirs of objects of a given set have or have not a given property; but only on attaining the cecond level, Level B, toes he cee the given proporty as a thing in itself, that may be comared with other things of a similar kind and classified according to sono higher level concopte.

The doll experiment discussed in this su-section is an experinent designed to identify the degree of confidence that the subject has when working at Level A nily. And co before we con enoure aitainment of the concept of symetry, the child'e universe of experience must be extended to include situations based on relations which are not oymetric.

2.7 Refloxivity

(i) Piasetion typo roflexivity check-ups

To date, the only information to be found concenning Piaget's viewo on the growth of the remaining defining property of an equivalenee relotion, namely, reflexivity, seems to be in "Checking up IIT" of the Nufficld hathenaties Project. Here, all of the check-ups have been prepared by a toam from the Institut den Sciences de l'Education in Geneva under the general supervieion of Piaget, and on page 20 we find

1. "For mune children, the relexive property of a relation, although it nou look sett-cvident at thes, is the most diobicult to turderstand. The forqowing is a check-up for thes idea.

The teacher should coplect together a group of children
6. who whe wearing pusfovers with cither skitts or thousens.

There should be at least two girts who each have a shirt and puleover of the sane corour. A large shect of paper and lats of coloured pencies will be needed. Ael the chiedren are asked to stand around the paper and to print
11. their names on it at the nerrest place to then. The boys are asked to whete under their manes the word 'pullover' followed by the colour of the puliover they are wearing: the gires do the same but jor both puelover and shirt, e.g. 'pullover red, shitt green'.
16. One of the children is asked to point to the nove of each child in turn to see the can find any girls who heve a skite which is the same colour as that particular child's publovet. He then drows one or more arows pointing from the nome of that child to that of the gine, on gires,
21. concerned. Several chiedron may be asbed to do this. cach dhewing onty a fes of the arnows.

The teacher wotches the chidfen playing the gane to see what they do about the two fittle gires each weaing a jumper the same colour as hor sioit. One of the children
26. might say: "She is wearing a blue skirt and a blue pullover so she can point to herseof". If none of the children mention the spontaneousey the teacher may ask: "Can we drow anather arrow from thes girlt"... "Where would it be pointins?" ... "What coloun of pullover and skirt does this
31. gire have? The teacher could drow an arrow tike this:

and could ask: "Why is this girl pointing to hersclif" ...
"hat does this ortow mean?"
The 'Girst-nane/suntrere' aone given by papy in his book
Mathenatique Noderne is also excelient for checking up on the child's ghasp of the reflexive properta. . . ."

(ii) Critique of the shove check-use

The bbove extract raises a nubber of points of concern:
(a) Lines 1-3: No evidence is given to support the statement given. Whilet no evidence is given in support, it would appear that the statement is true since reflexivity seems to be poychogenetically subeequent to the other propertios of equivalence zelations. Strong argunents in support of this conjecture con be found in the history of mathematice itself, where on a number of occasions propertiee of relatione are investigated - the relations not being roflexive initially but being redefined subseguently so that they become so, once the convenience of reflexiviky is realized. As an example, consider the set of lines in the Euclidean plane and the following Euclideen definition:

Two lines are said to be parallel if they have no pointe in common.

This definition 'partitions' the set of lines into 'classes' not equivalence classes however, but we have produced a set of subsete of lines with the following properties:

- the intorcection of any peir of subsets is empty,
- the union of all these cubects is the set of lines in the Euclidean plane. Ey definition, therefore, we can drop the quotes sumpunding the word partition above, and wo see that we con partition with something lose than en equivalence relation. Having dono thie, hovever, there is an induced equivalence relation on the set of
lines, namely, ". . is in the same class as . .". Thus we see that for centuries parallelism was based on antireflexivity. It became an equivalence relation retrospectively when we adopted the convention that lines are parallel to themselves, i.e. when we adopted the convention of reflexivity and made appropriate change in the definition of parallelism. And so it could be argued that reflexivity is often a useful mathematical convention applied to relations rather then an intrinsic property which some relations possess. More often than not we have a choice of convention to make, rather than an externally imposed constraint to acconmote.
(b) No attempt is made to give explicit fornolizetion of the relation under consideration. Lines 17-19 guggest that the relation is in fact
". . is wearing a skirt which is the same colour as's pullover."

Dut this relation is cuite complex, and might be more difficult for a child to grasp than an adult might think.
(c) The set on which the relation is to be used is not made explicit. The authors are implying that attention should be focused on the subset of girls tho have skirts of the same colour as their pullovers. Over this subset, the relation is reflexive. Over the whole set of girls in the group of children selected, however, the relation will not necessarily be reflexive, and over any set involving boys the relation cannot be reflexive. These observations highlight the necessity to specify the set under consideration to avoid misinterpretation.
(d) Similar criticiom can alsa be made about the presentation of the
second example in this section of "Checking Up III". The variation of the 'first name/sumame' game (see (30), p. 00w-91) j. which the first names have the same initial as the accompanying surname (e.g. Kevan Keegan) does in fact give a reflexive relation on the appropriate set. But again, the relation is difficult to grasp and difficulties may arise for the children through complicating factors which are not themelves the objects of study. Horeover, this type of situation will not have immediate relevance for the children - is this thy an assignment card has been suggested as the appropriate place for this exercise?

Thus, on taking into account the points raised under the four headings (a)-(d), namely
(a) the psychogenetically subsequent nature of reflexivity in equivalence relations,
(b) the need to give an explicit formalization of the relation under consideration,
(c) the need to specify the set on which the relation is to be used,
(d) the desirability of relevance for the children,
the following conclusion has been reached. With a class of children, a more appropriate context to begin the study of the reflexive property is given by the challenge to point to someone in your class who satisfies the relation " . . lives in the same house as . . ". Subsequent activities would also include non-instances of the concept of reflexivity to satisfy the strict criterion for concept attainment that was suggested by Lesh (19).

(iji) Recent American studies

On searching for further guidalines from recent American studies, we
find that additional information concerning children's use of the reflexive property is limited. The study by Steffe and Carey (26) does, however, include the question

Are children able to uee the reflexive and antireflexive properties?
as one of the queetions asked of four- and five-year-old children after formal instruction on
(i) establishing length relations only,
(ii) establishing length relations, conserving length relations and using properties and consequences of length relations. In addition, the following question was also considered: Does formal instruction on conserving length relations; on the reflexive, antireflexive, and asymnetric properties; and on consequences of length relations, improve the ability to use the reflexive and antireflexive properties of length relations?

To measure the pupils' capabilities a Reflexive and Antireflexive Test vas designed. This consisted of six items: three of the items involved the reflexive property of "same length as" and three of the items involved the antireflexive property of "langer than" or "shorter than". In administrating the test, the itens were assigned at random to each child so that each had a different seçuence of the same six jitoms.

In the discussion of the results which relate to the above questions, we find
"Very bew bout- and fivengear-old children were able to use the redexive and nonedicxive" propertel. . . . Instructional

[^6]experiences on length comparison appear to be sufficient for such chitdren to exhibit the refecxive propertes, 14% of the sample were able to use the reflexive property on the Girst test administration li.e. after exposure to Instructional Sequence I-7 sessions of $20-30$ minutes designed to develop the ability of children to establish a length relation between two curves) as conguted to ti8 who were able to use both properties. Instructionat Sequences II and III (desioned to develop the ability of children to use the reflexive and nonreflexive\% proporties; to conserve length relations and use the asymmetric property and logical consequences, respectively) sighificantly increased the abietey of four- and five-ilear-old children to use both properties. On the second test administration ils of the sampe were abee to use onllt the replexive property and 30 : of the sample were able to twe both. Only 29 of the sample did not display an ability to use the reflexive on nontefexive" properties. These conchsions substontiate Piaget's theory that experience is a necessaty but not sufficient condition for the development of logical thought processes because abl the children received the some selected experiences. Cottainly, the data substantiate that the ability to use the rebtexive propente is different from and precedes the ableity to use the nonreflexive* propertel.

There appears to be kittle, if ant, refation between the student variables Verbal Marity, T.2., Age and Social

[^7]chass and scores anoned by fowi-and five-ycar-old children on the Reflexive and Hontefexive* Test. Duly correlations involving Social class were signéficantly dibferent from zero, but these correlations were low." ((26), p. 41)

The observations contained in the last paragraph of the above quotation together with the statement
"Instuctional Sequences $I I$ and III signisicantly increased the ability of four- and five-geat-ofd chiedren to we both propertics.",
could be used to argue a case that the appropriate instructional activities may profitably be undertaken with similar populations of four- and five-year-olds. But such an argunent is not taking into account at least two qualifying factors.

1. The information given by the recults of this investigation do not cnable to to apocify, in advance, thich children will benefit fron such instruction and shich will not. All we are told is that sone will benefit.
2. By applying the strict criterion for concept attainment in this context, namely,
'reflexivity' has been attained wen the child can, with respect to length relations, distinguish instances from noninstances of reflexivity,
it cen be argued that
(a) as only 30% were able to use both properties, no more then 30% of the sample should be regarded as having attained reflexivity with respect to length relations.

[^8](b) the use of the reflexive property only, by 41% of the sample in this study, suggests a 'leamed response' to the relation "same length as" had occurred.

This lat pocsibility was in fact acknouledged by Steffe and carey, (see (26), p. 42), and if could only have been resalved by their undertaking an appropriate study of the temporal development of the concent. But Without this additional infomation the guestion surrounding the psychogenctically subsequent nature of reflexivity romane.

Before concluding this revien of studien conceming the dovelopnent of the properties of transitivity, symmetry and reflexivity, undertaken in Sectione $2.5-2.7$, we note that one of our original ains was
to see how the child grasps each of these properties independently
of the others, in aituations where they cen be clearly illustrated. This aim was, however, not strictly adhered to because not all of the studies considered chose to highlight just one of the three defining properties of an equivalence relation, In fact, the aims of the Amorican studies covered a much broader base than that indicated in the discussion so far. Let us therefore redrese this imbalence by simmarizing the basic themes of the purposes and quections of theae American studies.

Author(s)	Context	Basic thenes of purposes/questions of the investigation
$\begin{aligned} & \text { T.F. Carpenter } \\ & (24) \end{aligned}$	Concervation and neasurcment of liquid.	1. Assesment of degree of development of ideas of meacurement and conservation. 2. Identification of factors involved in this development.
$\begin{aligned} & \text { D.C. Johneon } \\ & (12) \end{aligned}$	Closcification by and estebliohment of matching relations.	1. The effocts of training. 2. The use of specific properties of the relation (e.G. transitivity). 3. The possibility of transfer of leaming.

futhos(s)	Context	Dasic themes of purposes/guestions of the investigation
$\text { M.L. Johneon } \underset{(27)}{ }$	Classification and seriation by length relations.	1. The effects of treining. 2. The use of epecific properties of the relation.
R.A. Leoh (19)	Interdependent development of clacsification seriation and number concepts	1. The effects of training on transfer of leaming.
D.T. Buens (22)	Establiching matching and length relacions.	1. The offects of training. 2. The effects of age. 3. The possibility of trensfer of use of properties acrose relational categories. 4. The relationships betwem use of properties of the relations including conservation.
L.P. Steffe and R.L. Earey (26)	Establishing length relations.	1. The effecte of training. 2. The use of specific properties of the relation. 3. The relationships between the use of properties of the relations including conservation.

This sumary shows that the theme 'the use of epecific properties of the rolation' is one of three thich are common to two or more investigations. However, the relevent details of this thene have already been discussed in 5ections 2.5 (ii) and (iii), and 2.7 (iiii). It remains to concider further dotalle of the findinge concerning the reletionships between the use of properties of the relations including conservation. This will be underteken in Soction 2.0. Dut firet, let us concider further details of the effects of the craining used. The question of the effecte of training was first raised in Section 2.5 (i) with respect to the transisive property only. In five of the Anerican studies it is pesed in a much broader context as the following sumary by K. Lovoll (31) ohows.

Author (s)	croup	Nature of Training	Ebects of Thaining
D.C. Johnson (12)	Kindergorton and finst grade chirdren with neasured 1.2. 50-120. No precise detailes of sociar background.	To form classes, intersection and union of classes, comprenent of clases, relations betueen cíasses and benween class elenents.	Imboved pertomance on all tive direct achievenent tests and on thee of the thanster tests, aethough not on the test of class Inclusion. Sone doubt remains as to whether there is any improvenent in regard to operativity.
H.L. Johnson (27)	First and second graic children: Negroes and midde class Caucasian pupies. No 2.0s given	To classtity on basis of equivalence relation "same length as" and scricte on basis of order relations "Ronger then". "shorter than".	Improved performate on Seriation Test. No improvement on Classification Test, Conservation of Length Rexations Test or Thansitivity Test.
R.A. Lesh (19)	Aged 5:3 to 6:2. Dicum from sucle Indiana comanith. A spread of abikity.	To classidy and seriate.	Improved pertormance on number tests but not on tashes involving spatial thansbornations.

$\begin{gathered} \text { D.T. owens } \\ (221 \end{gathered}$	Five- and six-year-olds. Disaduantaged Negro chiedren.	To establesh length relations to conserve natiching relations, and to use the transitive property of ratching retations.	Improved pertornance on transitivity of matching relations a tosk sinilar to activities in theatment. 10 transfer to other tosks.
L. P. Stelfe and R.L. Coney (26)	Fout- and bive-yearolde. Hormal sphead of T. I. and social background.	To establish length relations between tho curves, to use redrexive and nonrefrexive* properties and to conserve length relations.	Inproved abolity to compare the lengtius of two curves, in conservation of ength relations, in use of refrexive and nomekexive" properties. Linited imptovement in use of thansitive popertics by 5-tjear-ofds.

(B1), p. 181).

By taking into account some of the serious reservations we havo already noted concerning interpretation of results, we need not bo misled by the positive weighting of the statenents in the last colmo of the above table.
2.3. Relationships between the use of properties of relations
(i) The contribution of the studies by Steffe and Carey and D.T. Dwens On turning our attention to the theme the relationships between the use of properties of relations including conaervation', the specific questions asked by Steffe and Carey (26) of four- and five-year-old children after formal instruction on
(i) establishing length relations only,
(ii) establishing length relations, conserving length relations and using properties and consequences of length relations, were designed to produce answers to:

- Is the ability to use the reflewive and antireflexive properties necessary (or sufficient) for children to
(a) conserve relations,
(b) use the trensitive property of length relations?
.. Is the ability to conserve length relations necessery (or sufficient) for children to use the transitive property of length relations?

In the discussion of results which relate to these questions, we find
". . . the abitity to use the reflexive and nontefexive* phoperties as newsued here is not a necessary on a sufficient conlition for the ability to use transitivety

[^9]of vengti nelations.

- . because some children could use the refecxive property but not the transitive property, there mut be factors whid enoble chilitren to we the relexive property before they are able to use tronsitivity le.g. spatial ingon on the definition of "the same length as"). In fact, the resubts indicate that the reseevive property may be necessath for transitivity. This observation mon be due the the posibility that use of the refeexive propertes in this study was mote of a 'leaned response' thon a logicat-mothenticol process. It also appears that use of the replexive and noneplexive* properties is not a necestary or sufficient condition for beino able to conserve relations. . . . However, the data do not conthadict the fact that being able to use ondit the riflexive property may precede an ability to conserve Rength relations. . . The data in this study support the contention that conservation of identity is not unitory in naruie. Certainety, if a child judges thot a stich is the sane length as itself, he must ceso judge that it is not longer or shorter than itsels on a contrudiction would be present. On a logical basis and on a psychologicot basis, when one considers "consenvation" problems, it is necessaw to consider the properties of the netations which mat be involued.

[^10](1) Sec page overgeati...

- . it seons that conservation of Ponoth relations is
necessorty for transitivite.
- . The above data ane consistent widh Smedsend's (19053) ${ }^{(1)}$ observation that what he cales conservation of length is a necessaty condition for whe he calls transtivety."
((26), 1P. 42-43).

On remembering that we are interpreting 'transitivity' in the above context to be restricted-transitivity, it appears that the main points of the shove discussion can be summarized as follows:

But before comenting on the obove discussion of results, let us consider further evidence on the relationship between conservation and restrinted-transitivity.

In the investigation by D.T. Owens (22), answers to the follouing questions were sought

- Is the obility to conserve matching relations related to the ability to use the transitive property of matching ralations?
- Is the ability to conserve length relations related to the ability to use the transitive property of length relations?
- Is the ability to conserve matching relations related to tho
dbility to conserve length relations?
- Is the ebility to colve a problen involving trancitivity or a matching reletion related to performance on a test of conservation or transitivity of matching relatione which utilizes a standardized intervien temmique?
N.E.

The question conceming the relationship between transitivity of matching and length relations was discussed in Section 2.5 (iii).

In the discuscion of the results which relate to the above questions, we find
". . . no evidence is provided by these data that, for the chidfren in this study, the obility to conserve relations preceded the abilidy to use the transitive properts. The case is different, hovever, in the case of the Thansifivity problem.
-••
The deta gave no indication that conservation of matching relations precedes conserwation of tengri relations for the childen in this study. . . This evidence is in oppostion to the sugestion that the obility to conserve notciuing relations preccies the ability to conserve Rengrt nelations." ((22), p. 68-69).
"The result that about one-hat of the children who used the transitive moperty in each relationat category falet to use the conservation of that respective categony is at voriance with resuets of previous stadies. Snedseund
$(1964)^{(1)}$ found onelf 4 out on 160 subjects who possed the test on transitivity and failed on consenvation of discontinuous quatities and onfy 1 subject was the the conresponding cebe for hength. Noens and Steble (1972) ${ }^{(2)}$ observed onfy 406726 instances (anong 42 subjects) in which thonsitivity of a matching relation preceded conservation of that relation. Divers $(1970)^{|3|}$ found that in 878 of the cases where thansitults of a length nelation twe attained, the relation wes also conservet. In the stailes cited, the results consistentey indicated that attainment of conservation preceded atrainment of the thansitive phoperty. None of the studies involved instuction on practice, and the present tesults may be interpreted in terms of treatnent efoect. The trentmant was ebfective in improving perfornance on the test of the thansitive phoperty while the treatnent hod no efrect on conservation perfonmance for natohng relations. Thus some chithen in the theatment group met the criterion on the thansitivity test who might otherwise not have atiained thansitivitt. Oney two chitren who used thonsitivity on the Tronsitivity probeen foiled to exilbit conservation. This explanation apples, hovever, only to

[^11]the mathing rehational category becauso the theatmont mas not cfective in impoving the perbonmence on transitivity of length relations.

Perhaps an interpretation con be wade in teans of the characteristics of the childhen in the sampe. Shopeck $(1960)^{(1)}$ condueted a stady which involved both midde and Rown socio-ccononic statws chiedren. It whs found that anong the Rowo status chiedren the deveropnent patten of cordinal number consenvation was erratic. While the prosent stude dncluded no midice cless group fo\% comparison, it apents thet the pattens of attainment of consenvation and relational phoperties was irregupar for these fon comomic subjects." ((22), p. 71-72).

On incorporating the main points of the above discussion into our sumary diagram, we obtain

\longrightarrow precedes
— is a necessary condition for
\longleftrightarrow is not a necessary or sufficient condition for

This second diagram differs fron the first in two respects - there is the gueried hypothesis about matching relations and a query is inserted on a bypothesis about length relations.
(1) Skypeck, D.H. "The relationship of eecio-cconomic etatus to the development of conservation of number", umpublished doctoral dissertation, University of Hisconsin, 1966.

Except for the reference nate in the introduction to Piaget's earlier uriting and to a paper by dorthmon and cruen, which sugoest that transitivity is being usod in establishing equivalence (i.e. cardinel number) concorvation, the recults of this investigation by Buens (22) challenge the general conclusion of the previous atudies he cited, namely,

Conservation of a set of quentitative relatione such as matehing oz length relutions, is a necessery condition for reetrictedtransitivity of the sane set of quantitative reletions.

One reason not considered by Owens for this aparent contradiction may be the wey in which the word "conservation" is interpreted and used by the inveetigotors concemed. For example, variations in use of the teminology can be found in the following quotation from Owen's introduction to his investigation.
". . . in a task given by Snedseund $(1963)^{(1)}$ a child was asked to establish that one stick was Lonper than a second stick and to maintain that the one stick mas longer aften a conteicting cue was introduced. White Smedseund cabled the task "consenvation of Rength" a sitrilat trest in the present study is caled "conservation of the nelation "Ronger than"." ((22), p. 51). (This pascage is repeated, in its context, overleaf).

Let us tharefore consider some of the ways in which the word "conservation" has been interpreted and used.
(1) Smedelund, J. "Development of concrete transitivity of length in children", Child Development, 1963 , 34, D. 389 -a 35.
(ii) Various interpretetions end uses of the word "conservation"

Limited information on the veriations in points of vien of Piaget, Van Engen, 5redelund, Northman and Grwen, and Ovens concoming the concept of conservation, are to be found in Dwen's introduction to bis invertigation.
"In Piaget's 11952$)^{(1)}$ cossical consenvation of number tashs. a chied is asked to estabeish that there ate is man objects in a set A as in set B. Then one of the coltections, suy A, is taken through a physical thonsformation. Then the child is asked "Are thene as mothy's as b's or does one have monen" Van Engen (1971, 1. 43) ${ }^{(2)}$ has angued that this task may be neasuring whether of not the chid consenves the one-to-one correspondence rather than consowation of number. In this study a task simizar to the above example is considered to be a measure of conservation of the relation "as many as". It is not necessary that consorvation be limeted to cases of equivatence. For exumpe, in a tast given by Smedsend $(1963)^{(3)}$, a child was asped to estabeish that one stick was gonger than a second stick and to mantain that the one stick was Longer after a condeteting cue was introduced. While Smedslund calfed the tast "consenvation of lengm", a simitar task in the present study is calker "conscrvation of the nefrtion 'gongen than'". Thus, orden
(1) Piaget, 3. "The child's conception of number", Routledge and Kegan Pauls 1952.
(2) Van Engen, H. "Enistemology, reseerch and instruction", in f.F. Rosekopr, L.P. Steffe and S. Taback (eda) "iagetian cognitivedevelopnent research and mathematical education", Washington, D.C.: National Council of Teachere of Wathematics, 1971.
(3) Smodelund, 3. Mevelopment of concrote trancitivity of length in children", Child Developnent, 196 , 3/, p. 309-65.
retation consetvation is atso inofuded.
Conservation is studich from the relationa paint of vias ond thansituldy is recessarily a relationol property. Thus the refationshep betncen the develoment of consotvation and attemment of transitivet is aponohed from the standpoint of relations. In hes eareier whiting, piaget 11052, p. $2051^{(1)}$ reported that es soon as chieihen can establish a tasting equiviense (that is, conserve the equivalencel, they can at once use the transixive popoth.
"The explanation is simple: the composition of two equabences (fronsitivity) is aproaty inpled in the construction of a sengle lastin equivatence between two sets, since the fifferent successive foms of the two sets soen to the chifd to be difierent sets. ${ }^{n \prime \prime}$ (Pinget, 1052, p. 20011). Similarly, Notehman and etuen (1970) ${ }^{(2)}$ argue that transetivith is involved in equivatence conservation. Supose the subject estabiehes A equivalent to $B|A=B|$. When an equivalenceprescrving thansformtion T is performed, the subject estabeishes (covertly $A=T(A)$. Then, thansitivity is used in orden to teduct $T(A)=6$ or to consenve the equivalence on A and B. Shedstund $(1064)^{|3|}$ has argued that from a togical point of
(1) Piaget, J. "The child's conception of number", Routledge and Kegan Paul, 1952.
(2)

Northmen, 3.E. and Gruen, G.E. MRelationships between identity and equivalence conservation", Developnental Psychology, 1970, 2, 311.
(3) Snedslund, 3. "Concrete reasoning: A study of intellectual development", honographe of the Society for Research in Child Developnent, 1964, 29, (Serial No. 93).
view, conservation precedes thansitivity in the child's deveroment. Considen thee quatities which are nerited by a thansitive refation p. Assune that a child establishes A ρ. Blor A) mist undergo some transfomation T before is is compored with C; othewise A and C can be compoved perceptuceles. Honce, $B=T(B) \mid$ or $A=T|A|)$ must hold hrom one companison to the other."
(It might, incidentally, be asked whether Smedslund's argument focuses on the right point. It is not a matter of whether A and C can be compared directly but whether they are compared directly. But perhaps his comments concern test design and not the child's use of logic.)

In a leter discussion of training research piaget (Beth and Piaget, 1965, 1P. 1921 ${ }^{(1)}$ atso alluded to an ordering in the attainment of consenvation and transitiviry. He reponted thet Snedslund easity induced conservarion of weight by nepeotedtey changing the shape of a snoll cloy bate ant checking the veight on a scate. Sneristund was not successfue in obtaining imodiate leoning of the thonsitive propertif." ((22), P. 51-52).

To the above we may now add the following quotation from the introduction to the study by Steffe and Carey (26).
(1)

Deth, E.W. and Piaget, J. "Hathematical epistemology and psychology", Dordrecht-Holland: D. Reidel, 1966.
"Regordess of the content of these problems, they (i.e. conservation teoto devised by Piages) involve phesenting the subject with a vriabee $|V|$ and a standard $|S|$ stiralus that are inttially equivalent in both the porceptuse ond quantitative sense. The subject is then asked to make a jufgement regotidng theín quatitative equivolence. Once the julgonent is mole, the variable stimulus is subjected to a transhomation $v \rightarrow V '$, which atiers the pencentual but not the quatitative equivolence. between the variable and the stondond. Atter competion of the transtortation, the subject is asked to judge the quartitutive equivalence between the standard and the tronstosmed variable $(p, 16)^{(1)} . " \quad((26), p .19)$.
then formulatod in this way, Stoffe and Carey point out that
". . . a judgenest of consorvation moj be relative
(i) to the conservation of a quantitative nelation, or
(ii) to the identity of V and $V^{\prime} . "$ ((26), p. 19). which was the basis for Elkind's categorization of Piagot's conservation teste. But Steffe and Carey also draw our attention to agpects of conocrvation which are not completely clarified by Elkind's categorization. In particular, they argue a case for the following statement
"a comphension of relational terns is a prerequisite to probeens in conservation of the relation." ((26), p. 20), by considering conservation problems involving the relations "as many os" and "is longer than". These highlight the noed to be ascured that
(1) Elkind, D. "Piaget's conservation problems", Child Development, 1967, 39, p. 841-548.
the child
(a) ascociatos a one-to-one correspondence with the phrase "es many $a s^{\prime \prime}$
(b) is taking into account both sets of endpoints when establishing a length relation.

In other words, we have on echo of Ven Engen's point of vien ". . one must be assured that a conservation probzen is not a test of teminotogy. \quad ((26), p. 19).

Note that Steffe and Carey have also extended their discussion to "conservation" problens in situations where the initial relation under consideration is an order relation, not just an equivalence relation. Their interpretation of "conservation" in this extended context has to be inferred from the following:
". . . to conscrve the (length) relation the child must
realize that the relation obtains regardless of an Rength-preserving transfonations on one or both curves. In other terms, the child must reapize that, aterer such a thanshomation if the cutves are moved back side by side as in the original state, the ends will be still in the same reqative maner." ((26), p. 21).

Even so, of the variations considered so far of what Piaget regards as a key concept, the strongest guidelines on how the word "conservation" should be interpreted and used are given by Steffe and Carey. Hence, their account will be taken as a starting point in an attempt to clarify the main iosue raised in Section 2,0. (i). Gut first we require a more precise wathematical formulation of the characteristios of a conservetion problem. of a quantitative relation based on Steffe and Carey's interpretation

The characteristics of a test of conservation of a quantitative relation as interpreted by Steffe and Carey appear to be as followa:

Let I be a domain of quantities modelled by a finite set of objects which represent quantitios of 4 (e.g. a cet of Cuicenaire rods - for the donain of lengths). The subject is presented with a pair (x, y) where $x, y \in f$, and is asked to identify the quantitative relation R with respect to a given physical context (e.g. matching, length, volune, weight) auch that x Ry.

The child having establiched $x P y$, the elements x and y are subjected to transformations 5 and T which alter perceptual aspects only, i.e. $x \rightarrow S(x), y \rightarrow T(y)$ where S and T are transformations Which precerve the quantitative relation under consideration. (N.B. 5 or T can be the identity transformation of the set of quantitative-preserving transformations \& under consideration). After completion of the transformations, the subject is asked to nake a judgement conceming the truth of the statement $S(x) \mathbb{R} T(y)$. To conserve the quantitative relation F, for the pair (x, y), the child must realize that there exist inverse transformations S^{-1} and T^{-1} such that

$$
S^{-1}(S(x)) R T^{-1}(T(y))=x R y .
$$

If the above interpretation is what Steffe and Carey had in mind, then

1. it would appear that conservation of length relations, for exarple, should be interpreted as meaning the child can conserve each of the length relations "sane length as", "Jonger then" and "shorter then", i.c. the child realizes
that there exists a set of length-preserving transformations such that

$$
S^{-1}(S(x)) R_{i} T^{-1}(T(y))=x R_{i} y \quad(i=1,2,3)
$$

where $S, T, S^{-1}, T^{-1} \in \delta, R_{1}$ denotes the relation "sane length as", R_{2} denotes the relation "longer than", and R_{3} denotes the relation "shorter than".
2. by taking $x=y$, "conservation of identity" can be interpreted as follows:

To conserve identity, the child must realise that there exist $S, S^{-1} \in \&$ such that

$$
S^{-1}(S(x)) R S^{-1}(S(x))=x R x
$$

Note that since y is now the game as x, and since we are concerned with physical transformations, T is necessarily the aame as S. There is only one object, and two transformations cannot be performed on it simultencously.

On comparing the statement
". . what sonetimes passes for a test of conservation of.
identity is no more than a test of the refeexive and
nonte\{ hexive* properties." ((26), ค 22)
with the equation

$$
S^{-1}(S(x)) R S^{-1}(S(x))=x f x
$$

we see that it is possible that consideration of $x=y$ in the general case hes given rise to this statement. Unfortunately, such a line of argunent faile to take into account a number of important points. Let us therefore concider in greater detail the steps to be taken on putting $x=y$ in the general case, by comparing and commenting as appropriate.

[^12](iv) An analysis of points requiring consideration if the definition of conservation of identity is to be derived from the general case by putting $x=y$

1. (a) "The subject is presented with a pair (x, y) where $x, y \in M . "$
```
(a') "The subject is presented
    with a pair ( }x,x\mathrm{ ) where
    x\inM."
```

Comment:
In (e') the subject is being aeked to consider a special caso in which en elenent is to be paired with itself
2. (b) "The subject is asked to identify the quentitative relation fi with respect to a given physical context such that x Ry.
(b') "The subject is aoked to identify the quentitative relation R with respect to a given physical context such that XRX.

Comment:

Affirmative responees to "Is x longer (shorter) than x ?" for example, at this stage, indicate that these relational terms are not understood. In other words, tho restriction $x=y$ implies that
(i) an excmplar of the antireflexive property for each of the order relations of the particular relational category under consideration is being tested indirectly,
(ij) an exemplar of the refloxive property of the equivalence relation of this particular relational category is also being tested,
for as noted by Steffe and Carey
"Cobruinly, if a chied judges that a stick is the same length as itselt he must also judpe that it is not lonoer on shorter than itselfo or a contradiction would be present." (26), p. 43).

But to ensure that the antireflexive and reflexive properties of the relations in a particular category are being tested, we must extend the set 1 H under consideration to mare than one elenent. This will entail acking the child to considor elements $x_{i}(i=1,2, \ldots n, n \geqslant 2)$ in such a way that each is paired with itself and then to identify the quantitative relotion 18 with respect to the given physical context such that $x_{i} \mathrm{Rx}_{i}$ for all $x_{i} \in M, i . e$. the child is being tested on his recognition of

- the entireflexive property for each of the order relations of the particular relational category,
- the reflexive property of the equivalence relation of the particular relational category.

3. (c) "The child having estoblished XRy, the elements x and y are
subjected to
transformations S and T which altor pereeptual
aspects only. . . .
After completion of the transformations, the
subject is asked to moke
a judgonent concorning the
truth of the statement
$S(x) R T(y)$.
(c') "The child having established x, x, the element x is sujjected to tranaformation 5 which alters perceptual aepecte only. . . . After completion of the transformation, the subject is asked to make a judgenent conceming the truth of the $S(x) \cap S(x)$.

Comment:
If extension of M to include more than one element has not taken placo, then the child is being tested on his recognition of the compatibility of a quantity preserving transformation S with an exemplar of the
reflexive property of R. If extension of $t h a s$ taken place, the two possibilities need to be considered.
(a) a single transformation S can be applied to each x_{i} and the child askod to consider the truth of the statement $S\left(x_{i}\right) R S\left(x_{i}\right)$ for all $x_{i} \in H_{\text {, }}$ i.e. the child is being tested on his recognition of the compatibility of the quantity-preserving tranaformation 5 with respect to the reflexive property of R.
(b) different traneformations S_{i} where $S_{i} \in \delta$ for each i, can be applied to each x_{i} and the child asked to consider the tiuth of the statement $S_{i}\left(x_{i}\right) R S_{i}\left(x_{i}\right)$ for each i, i. e, the child is being tested on his recognition of the compatibility of a set of quantity-precerving traneformations with respect to the reflexive property of R.
4. (d) "To conserve the quantitative relation f for the pair (x, y), the child must realize that there exist inverse
transformations 5^{-1} and T^{-1} such that $S^{-1}(S(x)) R T^{-1}(T(y))=x R y^{\prime \prime}$.
(d') "To conserve identity, the child must realize that there exinte 5^{-1} such that $S^{-1}(S(x)) R S^{-1}(S(x))=x R x^{n}$.

Cormient:

Once again, three interpretatione concerning recognition of inverse quantity-preserving transformations are possible.

If the extension of M to include more than one element has not taken place, the recognition that there exists 5^{-1} such that

$$
S^{-1}(S(x)) R S^{-1}(S(x))=x R x
$$

can be interpreted as recognition of an exemplar of conservation of
compatibility of a quantity-preserving transfonation 5 with respect to on exemplar of the reflexive property of ?.

If extension of thas takn place and a single cransformation S has been applind to each x_{i}, the reccgnition that there exists 5^{-1} such that

$$
S^{-1}\left(S\left(x_{i}\right)\right) R S^{-1}\left(S\left(x_{i}\right)\right)=x_{i} R x_{i}
$$

for each $\kappa_{i} \in M$, can be interpreted as recognition of an exemplar of conservation of compatibility of a quantity-preserving transformation 5 With reppot to the reflexive property of R.

If extension of $1 /$ has taken place and different transformations S_{i} have been applied to the $x_{i}{ }^{\prime} s$, then recognition that there exists s_{i}^{-1} for oach S_{i} such thet

$$
s_{i}^{-1}\left(S_{i}\left(x_{i}\right)\right) R s_{i}^{-1}\left(S_{i}\left(x_{i}\right)\right)=x_{i} \nabla x_{i}
$$

for each $x_{i} \in H_{\text {, }}$, can bo interpreted as recognition of concervation of compatibility of quantity-precerving trancformations S_{i} with rospect to the reflexive property of R.

Fron the above onalysis it appears that confusion between "conservation of identity" and the "reflexive and antireflexive propertios" could have arisen fron two sources:

1. failure to recognize that the dofinitions of reflexivity and antireflexivity, as with trancitivity, imply at least two levels of application

Level $1:$ when $:$ is the only elenent of the set f
Level 2: whon x is just one element of the set H, which contains more then one eletonts and that application at Level 2 nust be attained before we can ensure underatanding of the reflexive and antiroflexive properties, hence the deliberate introduction of the tord
"exemplas" at stage (b ') of the above analysis to highlight this point.
2. the application of quantity-preserving transfomation(s) is not a necosong design-featury for a teat of reflexivity or antireflexivity, whereas the introduction of quantity-preserving traneformation(s) is necessary to test conservation.

Thus it scens that lack of clarity on interpretation and use of the terninolony is the underlying source of confusion expressed by the statement quoted on pago 113.
(v) An attempt to clarify the main issue raised in Section 2.8 (i) At this point we note certain eimilarities in the interpretetion and use of the word "conservation" by D.T. Owens to those of Steffe end Carey. Concider, for example, the follouing quotation
". . . order relation conservation is aliso includet.
Conscivation is studied from the relcitionol point of view and tansitivity is necessarily a relationt poperty. Thus, the retationstip between the tevetopment of conservation and attannent of thansitivith is appoached Gon the stendpoint of rebations." ((22), p. 52), and the sinilarity in the design of the Tests of Conservation of Length Relatione by these investigators, (See Appendix 2e.)

Unfortunately, we now have all the available evidence on which to base Oyen's interpretation and use of the word "conservation". Honce, further attempts to seek points of similarity and difference would raeult in yet more conjectures with respect to the conjecture already applied in the attempt to clarify Steffe and Carcy's interpretation and use of the word "conservation". Thus we see that without further detaile any attempt to confirm or reject the apparent contradiction
surrounding the statenent
conservation of a set of quantitative relatione is a necessary condition for restricted-irensitivity of the same set of quantitative relations,
would be open to deserved criticism. Once again, lack of clarity in interprotation and use of the terminology is our stumbling block.

2.9 Partition - ite role in the development of the concent of

 equivalence relationIn the list of definitions given at the end of Section 1.3 we included the following result

Any equivalence relation R on a set A partitions the set, in that x and y belong to the same subset if, and only if, x Py and conversely, given a partition of a set $A, x R^{1} y$ if and only if x and y belong to the same oubsct of the given partition of A, defines an equivalence relation R^{1} in A.

Thus we see that the concepts of equivalence relation and partition are closely related. Clearly, an investigation into the development of the bbility to partition a given set and other associated classificatory skills of young children would provide additional evidence on the development of the concept of equivalence relation.

Fortunately, classificatory behaviour of young children has been the swject of a numbor of recent research studies and a very useful overview of the main findings of these studies is provided by M.L. Johnson in his introduction to "Learning of Classification and Seriation by Young Children".
"Intieder and piaget $(7964)^{(1)}$ were among the first to systematicaley stuaty the behovior of chithen as they atiterpated to form classes. These authors report behavion releted to ciassidicatory acts ranging from "araphic collection" (Stage 11 in which the child forms spatiat wholes, to thue classification (Stage III). Thue dassification appears when children are able to coordinate both the intension and extension of a ciass as show by an ability to solve class inclusion problens - somewhere around $8-9$ years of age. Loveln, Mitchell and Everett $(1962)^{(2)}$ found behavion similar to that Gound by Inheeder and Piagct with only Stage 111 childirer being able to group objects according to more than one ceiterion; such as coloh, shape or form. The fact that the bases of classification children use is age related was revcaled by ofver and Hornsbys ${ }^{|3|}$. Their rescarch showed that collections made by vety boung chiddten are based on perceptible properties of cbjects (colon, shape, ctc. 1 with an increase of functional based equivatence as children grow ofach. Other reseatchers (Nacoby and
(1) Inholder, D. and Piaget, J. "The early growth of logic in the child: Classification and seriation", Translated by E.A. Lunzer, Routledge and Paul, 1964.
(2) Lovell, K., Mitchell, B. and Everett. I.R. MAn experimental study of the growth of some structures", British Journal of Psychology, 1962, 53, p. 175-188.
(3) Olver, R.R. and Horneby, J.R. "On equivalence" in J.S. Bruner, R.R. Olver and P.M. Greenfield et al., "Studies in cognitive growth", New York: John Wiley and Sons, 1966.

Hotiano, $\left.1966^{(1)}\right)$ reponted that the choise of criteria fon
classification is a function of the child's cupture.
While this maty be the case, ounsted, parbs and Riched $(1970)^{(2)}$ reponted that the chasification shiles of culturatey deprived chithen, inchuling an increase in the. voriety of oriteria used for classification, could be inptoved bef involving the chideren in a systematic. thaining procedure. Eduatds $(1969)^{(3)}$ also reported an increase in classibication performance of chibdien due to training. ower investigators (charbe, Cooper, and Loudon, $1969^{(4)}$; vonnele and Bourne, $1970^{(5)}$) reponted that conditions of thaining such as moking the child ware of natural retationships on ofderings arong a set of objects, may facilitate the ternning of equivatence
relations." ((27), p. 74).

Johnson's assessment of the current literature, however, led to the following sonclusion:

(1)

Naccoby, M. and Modiano, N. "Pin culture end equivalence I" in 3.S. Bruner, R.R. Olver and P.A. Greenfield et al." "Studies in cognitive growth", New York: John Miley and Sons, 1966.
(2) Olnoted, P., Parks, C.V. and Rickel, A. "The development of classificetion skills in the pre-school child", International Review of Education, 1970, 16, p. 67-80.
(3) Edwards, 3. "Effects of inotruction and concomitont variables on multiple categorization ability", Journal of Educational Psycholosy, 1969, 60, p. 138-143.
(4) Clarke, A.M., Coopor, G.H. and Loudon, E.H. MA set to ostablish equivalence relations in pre-school children", Journal of Experimental Child Poychology, 1969, 0, p. 180-189.
(5) Damell, C.D. and Bourne, L. Jr. पeffects of age, verbal ability, and pretraining with component concepts on the performance of children in a bidimencional classification tack", Journal of Educational Psycholoyy, 1970, 61, p. 66m71.
". . classidication has been apptoached ondy as a genetal catenorizing phocess not including the major cotion in classifging - the fonmation of equivalence classes. Hence, any relationship which naty exist between the cheit's bnowledge of the matheraticar properties of an equtuatence relation and his classification shipls based on that relation has not been expeicated." ((27), p. 75).

Consequently, although the main purpose of Johnsen's investigetion was to determine the infiuence of training on the ability of first and second grade children to clessify and seriate objects on the basis of length, an additional objectivo was
". . to deternine if the subject's obility to use the transitive property of the equivalence relation "same. Eemith as" was related to his abifity to classibe on the basis of the relation; . . ." ((27), p. 75).

Associated with this additional objective were the following measuring instrumente:

1. the two items designed by Johnson to test the child's ability to use the transitive property of the equivalence relation "some length as" that were included in the Transitivity of Length Relations Test (TLRT). (See Appendix $2 c$).
2. a three-iten Classification Test:

Iten 1 required the child to find and sort into three distinct piles, sticks congruent to three given sticks. Item 2 required the child to discover the criteria for a given classification.

Item 3 presented the child with the probler of forming a sot containing one element.
(See Appendix $2 f$ for further details).

For the subjects of this study, these measuring instrunents produced the following results:
". . perfonmance on itens 1 and 2 was seighty retated to vansitivity ability of "sane Rength as". No relationsitip could be detcoted between transitivity abieity and chasification perfomance on iten 3. perhops thansitivity wis not needed to correctiy perform the items on the classification rest." ((27), p. 日7).

In the subsequent discussion, we also find
The resules of the classilication test indicate that it was sonewhet easier for childten to classibty sticks on the basis of seff-selected criteria then to discover the criteria used for stichs atheady chassified. Where eittle difforence was bound in perfornance (as noted b: frequencies of response) on items one and three, due to schook and treatment, it was ctear thet second ghade childien did bettot on both of the itoms. On iten thee, the disterence in tesponse frequencies indicated that scond ghate children were abee to form a class with only one dement more consistently than the first graders. This finding ans consistent weth pinget's observation that the concept of a singular ciass appears in a child around eight or nine years of age. The hupothesis of a relationship between the child's classtication obility and his ability to use the thansitive property of the equivatence relation of "sane Length as" was not contirmed. The fach of a retationship may be explained, at least partialey, in two ways:

1. A two-iten test mut not give a thue assessment of inonsitivity ability. Past research reveais that much
controversy exists oven methodological issues and at the age the then chidden acquite the thansitive property. Rraine $(1059)^{(1)}$ using a non-verbol technique, reported What chichen con wse die tronsitive propenty of length selations as cutly as fow and one-hats yeans of ane. On the other hand Sinedseand $(1963)^{(2)}$ reports that operational thansitivity occuts arown seven pears of age and that Braine failed to assess transitivity.
2. Transitivity was not needed to do the ciossification tasks. In the case of iton one this coutd possibley hove been the case since over one hath of the subjects recelving a scone of zero on the transitivity test lindicating ouilure to correctly answor both trensitivity itensl, perboumed at the highest Revel on thes item. On iten 2 over 50 of the subjects performed at the lowest Revel of perfomance across thansitivity scores. over hakt of the subjects receiving zcto on thansitivity also portomad at the Lowest Reveds of perfommec on item 3. Such results suggest that thansitivity uas not necessany for the chassification itens in the test." ((27), p. 91-92).

Apart from the now obvious comment that restricted-transitivity not the trensitive property of "same length as" was under investigation, yet a
(1) Braine, M.D.S. "The ontogeny of certain logical operations: Piaget's formulation examined by nonverbal methots", Psychological Monographs: General and Applied, 1959, 73, (5 :hwle No. 475).
(2) Smedslund, J. "Development of concrete transitivity of length in children", Child Development, 1963, 34, p. 309-405.
further possibility couid account for the lack of any discernable relationship between the child's classification ability and his ability to use the "transitive" property of the equivalence relation "eame length as". It is this. Given any equivalence relation R defined on a set A, successful partition of A into equivalence classes can be echieved by direct reference to the statement which defines π. In other words, the ability to recognize distinct pairs (x, y) where $x, y \in A$ such that $x R y$ is ALL the child needs to successfully partition into equivalence classes.

The source of this suggection can be found in Section 2.7 (ii). Here, we noted that we can partition with something less than an eguivalence relation, but on using this near-equivalence relation we induced on the set under consideration the equivelence relation ". . is in the sams subset as . .". This idea can be generalized even further, for in fact, given any relation S defined on a set A, we can construct the partition defined by S as follows:

Step 1: Draw the arrow-diagram for the relation 5 defined on the set A.

The relation defined on the set A.

Ster 2: Put two distinct elements of A into the same subeet of the partition if and only if they are connected by arrows of the arrow-diagram: i.e. if and only if we can go from either element to the other by following the arrons of the diagram
but without paying attention to the "sense" of the arrows. Each element, if any, of set A not associated with an arron should be put in a class of its own. This defines the partition P of the set A.

The relation 5 defined on the set A.

The partition P produced by S.

$$
s \longrightarrow p
$$

By the above process we now have

$$
S \xrightarrow{\text { produces }} p
$$

In addition, the partition P produces the equivalence relation Q ". . is in the sane subset as . .". The arrov-diagram for this equivalence relation 0 can be obtained by using all the arrows representing the ordered pairs of S and adding the minimum number of others to then so that the ordered pairs represented by these additional arrows together with the ordered pairs of S, satisfy the reflexive, symmetric and transitive properties*.

[^13]

The relation S defined on the set A.

The pardition P produced by S.
The equivalence relation 0 produced by P.

And so we now have

$$
s \xrightarrow{\text { produces }} P \xrightarrow{\text { produces }} \mathrm{Q} \xrightarrow{\text { produces }} p \xrightarrow{\text { produces }} Q . \text { ad inf. }
$$

i.e.

$$
\mathrm{S} \longrightarrow \mathrm{P} \rightleftarrows \mathrm{a}
$$

Note that if S is an equivalence relation, then we do not add to the arrow-diagram any additional arrows representing ordered pairs after Step 1 has been completed. But of greater significance to the present argument is the fact that if S is an equivalence relation, then by Step 2 above we can put pairs of distinct elements of A into the same subset of the partition by direct reference to the statement defining S and the job is done - the reflexive, symnetric and transitive properies are nutonatically satisfied.

Thus we see that it is possible for young children to use the behavioural counterpart of step 2 with concrete materials and suceessfully partition by the equivalence relation under consideration without being avare of the reflexive, symotric and transitive properties. Morenver, use of this process could account for one of the major difficulties experienced by some children that was reported by Johnson. This was dealing with a singleton subeet, for we note that the process underlying Step 2 is dependent on pairs so that when faced with a
singleton the child her to modify his provious strategy in cone way.

It is alco poserble that this associntion of pairs is a factor in adult use of near-equivalence relations as true equivalence relations.

However, the hypothesis that the behavioural counterpart of the process underlying Step 2 is the one used by young children in partitioning a set A with respect to some equivalence relation 5 requires further investigation. For other procedures are possible. Consider the behevioural counterpert of Step 2 when it is specified as follows: Choose any element as first. Put it in a class. Choose any other element as second. If it is joined to the first by an arrou put it in the sane class as the first. If not; put it in a now class. Then iterato with the following procedure until all the elements are clasbified:

If any elentent remains unconsidered, choose any one. If it is joined to any of tho previously considered elements by an arrow of the arrow-diagram, put it in the same class as that element. If not put it in a new class.
(For non-finite sote this algorithm will require modification.) Nate that this algorithm does not rely explicitly on recognition of pairs, nor does it require modification for elenents not associated with arrow as did the original Step 2 procedure. But we now have two different approaches to the idea of partition. Still others may be possible, hence the request for further investigation to identify the behavioural counterpart(s) of the partitioning process(es) used by young children.

Whatever the outcomes of further research might be, it appears highly likely that explicit experiences which draw attention to the reflexive,
symmetric and transitive properties of equivalence relations may be necessary before tho child is able to 'see' that these three properties can be used to produce a partition of a set.

2.10 Soncluding remarks

From the vact output of published work of Jean Piaget we have selected appropriate sections for the foundation of a franowork within which observations about the development of the concept of equivalence relation can be orgenized. In doing so we heve encountered widely differing interpretations of Piaget's work by individuals who have concentrated their offorts on different sectione of it. The fundamental reacons for this diversity seem to be traceable to at least Who sources. First, the complexity and occasional internal inconsistency that are to be found in Piaget's published work. Consider for example,

1. Piaget's psychologicel model known as the grouping,
II. the application of woll-defined mathenatical teme in restricted contexts.

The former (I) does not have a rigourous mathematical formulation, and although reformuations exist thich appear to be logically satisfactory, recent American research in this area has been based only on the imprecise formulation by pieget and not on this recent work by Wittmann and Steiner. The latter (II) appears to have led to confusione of ideas (e.g. conservation of identity and reflexivity) and to contradictione in the results of recent inveetigations. This suggests that the pay-off from the considerable onount of experimental work done might have had greater import had greater care been taken with respect to the terminology used. Second, the tie up between the poychologicel modele that have boen devised and the behavioural counterparts which they are eupposed to represent is very slack. But, given that it is
difficult to describe the behavioural counterparts of sone of the simplest mathenatical notions such as rostricted-transitivity, reflexivity and conservation, this camot be used to exeuse the imprecision we have already noted.

Just as there are gaps between the psychological models and the behavioural counterparts wich they are required to describe, so there are geps between the mathematical notions and their pedagogical application in other parts of the school curriculum. Two interconnected considerations appear to be involved. The first consideration is the lack of precision of ordinary language. This imprecision varies with the aren of application and is rolated to the second consideration, which is the extent to which people "calculate", in cone meaningful sense, in the classificatory systems in different subject fields. These mattera are inportant because all subjects in the school curriculum should be contributing to the development of the logical use of language by the child, and we are here considering some of the difficulties of doing so. Teachers need to appreciate the trape, and to be aware of the need to make decisions on whether or not to discuss the traps explicitly with the children.

The lack of precision in everyday language is not necessarily a fault for which the user is to be criticized, as it may be brought about by unavoidable features of the matter under discuscion. Hany clessificatory systems in everyday use can only be associated with nearequivalence relotions. For example, thore is among teachers a reluctance to discuss the frequent ebsence of the reflexive property. This absence is exemplified in the traditional viow of parallelism and the colloguial usage of the ward 'brother'. The teachor needs to consider the advantages and disadvantages of adapting usage in such a
wey thet the relation becomes reflexive.

As examples of the difficulties - one cannot apply transitivity arguments to equivalences which are only approximately transitive without ame modification: old otyle definitions in geonetry (ise, squares are not thon解uses) led to a situation in which general arounents fail to cover a number of inconvenient special cases which require special treatment. (If mathenaticians thenselves ran into such difficulties whet may be expected of athers?)

As noted earlier, the extent to which people "calculate" with clacsificatory aystems varies very much in different subject areas. At one extreme there are systens in which no "calculation" is atterpted at all; at the other extreme, as exemplified in the field of linguistice, we have something wo can fairly call calculation, since linguistic theorists employ syctems of ideas of precisely the same type as those employed in some parts of pure mathematics. The more people wish to "calculate" with classes, in the sense of manipulating them as if they vere entities in themselves, the more necessary it is that the ideas are formulated in a precise quasi-mathematical way.

We also note that the diversity in interpretation of Pinget's work has produced implications requiring further conaideration when, following Pieget's lead, we dosign experimental procedures which facilitate diagnosis and so maintain contact with the development we wish to study. In partioular, when designing experinental procedures to investigate

1. how the child graspe cach of the properties of reflexivity, symetry and traneitivity independently of the others,
2. the relationshipe which may exist between the child's use of properties of the relations under consideration,
ve see that there js now the need to ensure
(a) a watch between the terminolosy used and the content of tho experiments
(b) that strict criteria for concept attainnent are applied.

Conceming thie lattor point of edopting as criterion the dullity to distinguish instances from noninstances, we mugest thot had tho investigatore ueed this criterion

- there would havo been no need to identify levels of aprication for the concepts of reflexivity and transitivity (see Soctions 2.5 (iv) and 2.0 (iv)),
- agreement on a proper dofinition of each concent could have resulted, thereby avoiding the blurring of meaning which we have encountered.

Additional decign featuree which ohould also be incorporated are that
(i) the child thould have had sufficient experience in wonking in the given physical context so that
-. With respeet to 1 above, the likelihood of his recomizing the property concerned is increased, - With respect to 2 bove, the likelihood of his use of the relationship between the properties is increased,
(ii) the key attributes under consideration should be differentiated by the child in his everyday conversation,
(iii) there are no attributes of the materials gelected other than the onec on which the experinent is based whith could be the source of failure for the chile (e.g. use of distracting perceptual cues in teote of transitivity).

For exampe, on finding that a symatric relotion (outside of the context of an equivalence relation) had not been odequately studied, the suggested design for such on experiment, included in this paper (whieh has received a madest pilot in school), deliberately incorporated
the following feacures:

- e set of hetion-han type dolls wearing shirte, trousers and boots,
- colour,
- dolls identical in every respect except for the colours of the shirts wom,
as exemplare of (i), (ii) and (iii) repectively, Use was also tade of non-exemplars of the basic relation ". . is wearing a different coloured shirt from. " for all three etages tnder investigation, to see if the child was in a position of recognizing whether pairs of dolls fron the given set satisfied or did not sstisfy this basic relakion.

The ain underlying the bbove suggestions is the improvenent of the offoctiveness of both diamostic/heuristic and clinical/experinental methods of enquiry when they are applied to this area of study; for severe criticism has been applied on this point:
"It is a sed comnentary on the eblectueness of ow methods of enquiny that after sone elghty feaks of psuchologicat Investigation and a discontinuous history of forty pears of faboratovy experdnents. out fund of aecepted knowledge of the subject of conceptualization comprises so titele of consequence that it is hordey worth compiting."

$$
((32), p .190) .
$$

Although more than a decade old, this oriticism still seems very relevent. The goal of further enquiry must be to bring about a state of affairs in which this criticien is no longer applicalle, and we hope that this thesis will make a mell contribution in this direction.

REFERENCES

Primary References

(1) Landau, E.
"Grundlagen der Analysis (Das Rechnen mit genzen, rationalen, irrationelen, komplexen zahlen). Ergänzung zu den Lehrbüchern der Differential - und Integralrechnug", Akadenische Verlagsgesellschaft, Leipzig, 1930.
(2) Mansfield, D.E. \& Bruckheimer, M.
(3) School Hathenatics Project.
(4) Metcher, B.
"Directed Numbers" in Hathenatical Reflections", C.U.P. 1970.
(5) Fletcher: T.J.
(6) Skent, R.R.
(7) Choguct, C.
(8) Budden, r.J.
(9) Lyons, J.
"Understanding Mathenatics - Book 2", University of London, 1965.
"Geonetry in a Hodern Setting", Kerchau, 1969.
"todern Mathematics end Mucic", The Mathematical Gazette, Vol. LI, No. 377, p. 204-215.
"Bound Vectors and Free Vectors" in "fathonatical Reflections", C.U.P. 1970.

(10)	Naur, P. (ed.)	"Revised report on the algorithmic language ALCOL 60", The Computer Journal, January, 1963.
(11)	Steffe, L.P. (ed.)	"Research on Mathenatical Thinking of Young Children", National Council of Teachers of Wathenatics, Washington, D.C., 1975.
(12)	Johnson, D.C.	"Learning of Selected Parts of a Boolean Algebra by Young Children", in L.P. Steffe (ed.) "Research on Hathematical Thinking of Young Children", NCTM, 1975.
(13)	Thon, R.	"Structural Stability and Morphogenesis", Reading, lass: H.A. Benjamin Inc., 1975.
(14)	Flavell, J.H.	"The Developmental Psychology of Jean Piaget", Van Nostrand, 1963.
(15)	Piaget, 3.	"Traité de Logique", Paris: Colin, 1949.
(16)	Piaget, 3.	"La Psychologie de l'intelligence", Paris: Colin, 1949.
(17)	Piaget, J.	"Logic and Psychology", Manchester University Prese, 1953.
(18)	Piaget, J.	"Classes, relations et nombres: essai sur le 'groupenent' de la logistique et la réversibilité de la pencée", Peris: Vrin, 1942.

(19) Lesh, R.A.
"The Generalization of Piagetian Operations as it Relates to the Hypothesized Functional Interdependence between Classification, Seriation and Number Concepts", in L.P. Steffe (ed.) "Research on Mathomatical Thinking of Young Children", NCTM, 1975.
"The Concopt of Grouping in Jean Piaget's Psychology - Formalization and Application", Ed. Studies in Hathenatics, 5. No. 2, 1973, p. 125-146.
(21) Steiner, H.G. "thathematical Analysis of Piaget's Grouping Concept, Papy's Mini-computer as a Grouping, Int. J. Hath. Ed. Sci. Technol. Vol. 5, 1974.
(22) Wuens, D.T.
"Learning of Equivalence and Order Relations by Disadventaged Five- and Six-Year-0ld Children", in L.P. Steffe (cd.) "Research on Hathematical Thinking of Young Children", NCTM, 1975.
(23) Nuffield thathematice "Checking Up III", Chambers/furray/Viley, Project
(24) Earpenter, T.P. "The Performance of First- and SecondGrade Children on Liquid Conservation and Heenurement Problems Employing

Equivalence and Order Rolations", in L.P. Steffe (ed.) "Research on

```
Wathematical Thinking of Young Children", NCTH, 1975.
```

(25) Nilliams, E.M. and
Shuard, H.
"Primary Nathenatice Today", Longman,
1070.
(26) Steffe, L.P. and
Carcy, R.L.
"Learning of Equivalence and Oroer Relations by Four- and Five-Year-01d Children", in L.P. Steffe (ed.) "Research on Mathematical Thinking of Young Children", NCTH, 1975.
(27) Johnson, M.L.
"Learning of Classification and Seriation by Young Children", in L.P. Steffe (ed.) "Research on Hathematical Thinking of Young Children", NCTM, 1975.
(28) Piaget, J.
"Judgement and Reasoning in the Child", Routledge and Kegen Peul, (2nd reprint), 1962.
(29) Danzigex, K.
"The Child's Understending of Kinship Tems: A Study of the Development of Relational Concepts", The Journal of Genetic Psychology, 1957, 91, P. 213-232.
(30) Papy, G.

Modern Mathenatics - Volume 1",
Collier-Macmillan, 1968.
(31) Lovell, K.
"Sumary and Implications", in L.P. Steffe (ed.) "Research on Mathematical Thinking of Young Children", NCTM, 1975.

(32)	Hallace, J.G.	"Concept Growth and the Eclucation of the Child ${ }^{10}$, NFER, 1965.
(33)	Griescl, H.	"Die Neue Mathenatik fur Lehrer und
		Studenten - Band $2^{\prime \prime}$, Hanover: Hermann
		Schroedel Verlag Ki, 1973.

Secondary Reforences

Eeilin, H .	"Learning and Operational Convergence in Logical Thought Development", Journal of Exporimental Child Psychology, 1965, 2; p. 317-339.
Beth, E.H. ${ }^{\text {c }}$	"Hathenatical Epistenology and Psychology",
Piagct, J.	Dordrecht-Holland, D. Reidel, 1966.
Braine, M.D.S.	"The Ontegeny of Certain Logical Operations:
	Pinget's Formulation Examined by Nonverbal
	Methods", Psychological Monographs: General and Applied, 1959, 73 (5, thole No. 475).

Bruner, J.S. Olver, R.R. "Studies in Cognitive Growth", New York: i Greenfield, P. ${ }^{2}$ et al. John Viley $\%$ Sons, 1966.

Carpenter, T.P.
"The Role of Equivalence and Order Relations in the Development and Coordination of the Concepts of Unit Size and Number of Units in Selected Conservation Type Measurement Problens", Technical Report No. 178, Wisconsin Research and Development Center for Cognitive Leaming, Madison: The University of Misconsin, 1971.
Claxke, A.H., Cooper,
C.H. \& Loudon, E.H.

Damell, C.D. ${ }^{2}$
Bourne, L., Jr.

Divers, E.P., Jr.

Duvert, L., Gauthier, R. \& Glaymann, M.

Edvards, 3.

Elkind, D.

Elkind, 0.
"Piaget's Conservation Problems": Child Development, 1967, 38, D. 047-848.
"A Set to Establish Equivalence Felations in Pre-school Children", Journal of Experimental Child Peychology, 1969, B, p, 100-189.
"Effects of Age, Verbel Ability and Pretraining with Component Concepte on the Performance of Children in a Bidimensional Classification Task", Journal of Educational Psychology, 1970, 61, p. 66-71.
"The Ability of Kindergarten and First Grade Children to use the Transitive Property of Three Length Relations in Three Perceptual Situatione", Unpulished doctoral dissertetion, University of Georgia, 1970.
"Travaux Pratiques de hathénatique - Seric II: Les Relations", Paris: O.C.D.L., 1968.
"Effects of Instruction and Concomitant Variables on lultiple Categorization Ability", Journal of Educational Psychology, 1969; 60: p. 130-143.
"Discriminetion, Seriation and Numeration
of Size and Dimensional Differences in
Young Children: Piaget Replication Study
VI", Joumel of Genetic Pcychology, 1964s
104. p. 275-296.

Inhelder, B. A	"The Early Growth of Logic in the Child:
Piaget, 3.	Classification and Seriation", Translated by E.A. Lunzer, Routledge and Paul, 1964.
Levell, K., Mitchell, B.	"An Experimental Study of the Growth of Some
\& Everett, I.R.	Structures", Eritish Journel of Peychology, 1962, 53, p. 175-100.
Maccoby, M, and	"On Culture and Equivalence: I", in 3.5.
Hodiano, N.	Bruner, R.R. Olver, \mathbb{E} P. H . Creenfield, et al. "Studies in Cognitive frowth", Now York: John Wiley ${ }^{2}$ Sons, 1966.
Northman, J.E. :	"Relationship between Identity and
Gruen, C.E.	Equivalence Concervation", Developmental
	Peychology, 1970, 2, D. 311.
Onnsted, P., Parks, C.V.	"The Development of Classification Skills
\& Rickel, A.	in the Preschool Child", Intemational
	Revien of Education, 1970, 16, p. 67-80.
Olver, R.R. \&	"On Equivalence", in J.S. Bruner, H.R. Olver,
Hornsby, J.R.	Q P.A. Greenfield, et al., "Studies in
	Comitive Grouth", New Vork: Johm Wiley: Sons, 1966.
Owens, D.T. \&	Performance of Kindergarten Children on
Steffe, L.P.	Transitivity of Three thatching Relations".
	Journal for Research in Mathematics Education, 1972, 3, p. 141-154.

Pinget, 3.	"The Child's Conception of Number", Routledge and Kogan Paul, 1952.
Piaget, 3.	"Equilibration and the Development of Logical Structures", in 3.M. Tanner ic E. Inhelder (eds) Discussions on Child Development", Vol. 4, Tavistock, 1960.
Piaget, 3.	"Science of Education and the Psychology of the Child", Translated by D. Coltman, New York: Viking, 1971.
Piaget, 3. \&	"The Hental Imagery of the Child",
Inhelder, ${ }^{\text {a }}$	Tranclated by P.A. Chilton, New York: Dasic Hooke, Inc., 1971.
Sincleir, 1.	"Number and Heacurement", in H.F. Rosmkopf, L.P. Steffe, and S. Taback (eds), Piagetian Cognitive-Development Research and Wathematical Education", Hashington, D.C.: National Council of Teachere of Mathenatics, 1971.
Skypeck, D.ll.	"The Relationship of Socio-Econonic Status to the Development of Concervation of Number", Unpublished doctoral disectation, University of Misconsin, 1966.
Stredslund, J.	"The Acquisition of Transitivity of Height in Five- to Seven-Year-0ld Children", Journal of Genetic Psychology, 1963, 102,

p. 245-255.

Snedslund, J.
"patterns of Experience of the Aequisition of Concrete Trancitivity of weighe in Eight-Year-0ld Children", Scandinavian Journal of Psychology, 1963, 4, P. 251-256.

Smedislund, J.
"Development of Concrete Tronsitivity of Lengih in Children", Child Development, 1963, 34, p. 389-405.

Smedslunci, J.
"Concrete Reasoning: A Study of Intellectual Devolopment", Monographe of the Society for Reeearch in Child Development, 1964, 29, (Serial No. 93).

Van Engen, H.
"Epistemology, Research and Instruction", in
R.F. Rosskopf, L.P. Steffe, end S. Tabock
(eds) upiagetien Cognitive-Development
Research and Mathematical Education",
Wachington, D.C.: National Council of
Teachers of Hathematies, 1971.

Theorem:

Any equivalence relation R in A partitions the set, in that x and y belong to the same subset if and only if $X P y$, and conversely given a partition of $a \operatorname{set} A, x R^{1} y$ if and only if x and y belong to the same subset of the given partition of A, defines an equivalence relation R^{1} in A.

Proof:
Given an equivalence relation R in A, we can now define subsets of A by x and y belong to the same subset of A if $x R y$.

As R is reflexive, $x R x(x \in A)$, so each element belongs to at least one subset of A.

We now show that x cannot belong to two subsets of the partition. Suppose $x \in B$ and $x \in C$ where B and C are subsets of the partition and $B \neq C$, then if b is any element of E and c is any element of C, we have

$$
x \text { and } \quad \text { xRe }
$$

But R is symmetric and so $b R x$. Also R is transitive, hence $b R x$ and x Re implies bRc, which in turn implies $b, c \in B$ and $b, c \in C$. Thus we see that any element c of C belongs to B, and any element b of B belongs to C, i.e. $B=C$, which contradicts the hypothesis that $B \neq C$. Thus any equivalence relation P in A partitions the set A. Conversely, given a partition of a set A we define R^{1} so that $X \mathbb{R}^{1} y$ if end only if x and y belong to the same subset of the partition, then
(i) for all $x, x \in A, x R^{1} x$ as x belongs to the same subset as itself, i.e. \mathbb{R}^{1} is reflexive,
(ii) yRx whenever $x R^{1} y$, i.e. R^{1} is symmetric,
(iii) if $x R^{1} y$ and $y R^{1} z$ then $x R^{1} z$, because the subsets of the partition do not overlap by definition. Hence, R^{1} is transitive.

Thus wo sec that R^{1} is an equivalence relation.

APPENDIX 2 a
The reflexive, troncitive hull of Δ
The reflexive, transitive hull of Δ can be obtained as outlined belon:
Suppoce If is the set as illustrated

and that \triangle is defined by

$$
\Delta=\{(a, b),(a, c),(c, d),(d, d),(e, f),(f, g)\}
$$

```
dinotes the
ordered
pair (a,b)
Od denotes
(d, d)
```

He now nake all the compositions that are possible with the clements of \triangle, within the reatriction inposed by (iv). For example

$$
(a, d) \circ(c, d)=(a, d)
$$

hence (a, d) becomes a menber of the transitive hull we are constructing. This gives $\{(a, b),(a, c),(a, d),(c, d),(d, d),(e, f),(e, g),(f, g)\}$ as the transitive hull of Δ.

To obtain the reflexive, trancitive hull of Δ, we include all the ordered pairs of the form (x, x) where $x \in \mathcal{H}$, as elements of the set i.c. $\operatorname{RT}(\Delta)=(a, a),(a, b),(a, c),(a, d),(b, b),(c, c),(c, d)$, $(d, d),(e, e),(e, f),(e, g),(f, f),(f, g),(0, g),(h, h)\}$.

Thus $\operatorname{RT}(\Delta)$ is the smallest subset of $1 / \times 4$ which is reflexive, transitive, and contains Δ.

APPEDIX 2b

A notion used by Gernan didacticians (though seemingly little discussed in England) is that of a domain of quantities (Grossenbereich). A domain of guantitiee is in fact the appropriate obstract model for the activities of weighing and neasuring which are such a strong feature of the didectics of primary mathonatios in England.

A domain of quantities is defined by friesel (33) as
A set M, with a binary operation + end a relation $<$ which
satisfies for all $a, b \in \|$

1. Commatarivity: $a+b=b+a$
2. Associativity; $\quad a \div(b+c)=(a+b)+c$
3. Either $a<b$ or $b<a$ or $a=12$
4. $a<b$ if and only if there exists $c \in H$ such that $a \div c=b$.
(Note that H is assumed closed with respect to t ; in axion 3 the 'or' is exclusive. No reference is made to a zero element, but by implication such an element is excluded).

It is easy to show that axion 3 ensures that $<$ is asymotric, and that the associativity and ciosure of + lead to the transitivity of $<$.

A domain of magnitudes cen be seen as a particular kind of grouping, end it corresponds to Piagot's grouping V.

APPEDIX 20

Instrumento desimed to tost a child's ability to use the transitive pronerty of matching and lenoth relations

1. The Transitivity Test in Steffe, L.P. and Carey, R.L. "Leaming of Equivalence and Order Felations by Four- and Five-Year-0ld Children".

Sample item:

"hateriaps: A hed stick and a green stick of the sman rengtil attached to a cardbood as foleous:
ned stick green stick A white stick the same length as the red and green sticks for the child's use.

Question: (a) "Is the red stich the same length as tout stick?"
(b) "ts the green stich the same lengut as jour stich ${ }^{n}$
(c) "Is the green stick shorter than the ted stick?" ((26), p. 46).

Further detaile:
"The Thansitivity Test, consisted of six itens where "Yes" was the conect response for thee itens. Fon these itents cach of the refations "fonger thon", "shorter than", and "the some Rength as" was included. "No" was the correct response tor the renaining thee items. Each of the later three itens involved trensitivity of "the same length as". It ure not possible for the chitd to use a non-tronsitive fupothesis to arrive at a correct response because aet of the perceptuat
cues were biased against a connect response and the child was not allowed to directely compare the two curves under consideration. (26), 1,26)

Testing Procedure:
"The chipthen were tested on a one-to-one basis. The thems were assigned at random to cach child so that each had a difoerent sequence of the sane itens. Net tests were administered by specindiy trained evaluators. In the case of the Thansirivity Test, unless a child estabeished two correct comorisons no mensure was obtained on his abiltiy to use the thansitive propenty of that netation." ((26), p. 26-27).
2. The Transitivity Teats in Duens, D.T. "Leaming of Equivalence and Order Relations by Disadvantaned Five- and Six-Year-01d Children".

The Tranaitivity of Matching Relations (MR) Test
"The putpose of the Transitivite of llateheng Relations (Tle) Testuas to measure a child's abitity to use the transitue property of mathing retations. on a Thi item a child was presented turee colpections A, B, C of phusicat moterials andoned in cursters. Suppose, for example, that there were hovet a's than b's and fever b's than c's. The chitd was instructed to pair the a's and b's and was then asted
"Are there fewer a^{\prime} 's than $b^{\prime \prime}$ sp $^{\prime}$
The examiner then put the a's into a cus which sat neandy and saia
"Pain tic b 's ond c's."
Notor the poind the exuminer ashed
"Are there ferer b's thon cisp"

The examen then placed the c's in anothon cup ond asked
"Are there fow a's than c's?"
and
"he thore more a's than ets? lor "Are there as nany a^{\prime} \& as cis?

Wote that the sets A and C were not tpaited and that the obiccts wote screened at the the of the thasitive inforence. ((22), p. 54-55).

The Transitivity of Lengh Relations (TLR) Teat

"The Thansitivety of Length Relations (TLR) Test was designed to measure the abietity of a child to use the transitive propetty of the Rength relations. On each iten, as in the TMR test, a chile ans asked to establish the relation betveen two stichs A and B. Stick A wos praced in a box and stich B wos comored with another stich e such that the sane nelation hed betwen is ard C as betwen A and B. Then stich C was phacer in a box and two questions, relative to A and c, wete asked. ((22), p. 55).

The Transitivity Problen (TP)

"The Thansitivity problem (TP) nos designed to measure the obility of a child to solve a problem uhich involved thansitivity of a matohing refation with minoman guidance fron the exaninet. The situation involved a catdboard box frow which the front and top were nemoved. The box was divited into halves be a pattition as shown in Figute 2. Ter chechers were drtached to the botrom inside one half of the box and ten tiles were attached in the other side. Twelve buttons tay on the table in front of the box. After the objects were itentified, the exminer said,

Find out if there ore os muy chechens as thes. You now use the buthons to heop gou find out."

In genorad the examer gave as betele guidance as was possibee. but if the chitd faded to respond at some point, the erontret directed the netr step townd solution. when a response ares given. the examiner asked for an exptantion.

Floure 2

((22), p. 56).

Scoring Tests

"An itom wos scored "pass" provided that the chied andwered comectiy ace the questions contained in the tom ond "foip" otherwise, The muther of thems sconed "pass" by a chitd on each tesi was considered to be his scone on the test. For the pupose of compring these datu with othor thedies it was desingble to distungish childien for which cuidence cxisted that they could use a propertey from those for which no such cuidence existert. This thes accomplished by setting a chitetion score based on a handom model. It was assuned that a chice couti use a relationat phopenty if and onfy is he net the ofiterion on a particutan test. Fout of the six iters thes the criterion set on each of the THR and TLR Tests. The probability of reaching this critenion by guessing was at most 0.038.

For the Thansitivity proben the following fow sevees of
abitety to appet the thonsitive poperty were identibied:

1. the chied neither consistentely estabeished relations nor used the transtive proporte:
2. the child estabetshed nelotions but did not use the transieve property;
3. the chite both extabished refations and used the thensitive propertif wtolow adequate justefication:
4. the chied estabeished rehations, wed thansitivity and gave adequate justification for his conclusion.

The consonsus of thw of thee judges ratings, based on thanseripts of audio tapes was tahen as the chied's rating on the Thansitivitt problen. ((22), p. 57).
3. Iransitivity Tost in Johnson, M.L. "Learning of Clessification and Seriation by Young Children"

Iransitivity of Lenath Relations Test (TLRT)

This test consisted of six itens; two each for the relations "same gongth as", "Ronger than" and "shouter than". Two perceptuax stinth wore present soreened and contrictive. At naterials in this test consisted of red, beue and green sticks aet $\frac{3^{\prime \prime}}{8}$ in dinneter and dhbering in Leng*h by $\frac{1^{\prime \prime}}{B}$. In each item the chied had first to determine the nelation that existed between the red and bue stions, then the beue and meen stichs. To noke an inference bowt the repation What existed between the red and gheen sticks the child was ashed three questions in randon orden. (i.e. Is the red stick longer than the green stick? Ie the red stick the same length as the green stick? Is the red stick shorter than the groen stick?). On the itens with soheoned stimuti the finat intorence about the tongth of the red and areen otichs had to be made whth the sticks

In boxes and not vistble to the subjects. This test was used both as a pretest and a postest with scoting.

$$
((27), \text { p. } 78)
$$

4. The Transitivity Test in Johnsen, D.C. "Leaming of Selected Parte of a Boolean Algebra by Young Children"

Iransitivity Test (TR)

"This 10 item test designed to measure the abitity of chithen to we the thanstive property of the retetions tested for in the Relation Achievenent Test, (i.e. "more than", "fewer than", "as many as", "same shape as" and "eane colour as"). Two itens were designed to test for the transitive propertel of each of the feve refations. A"eott to right and a "right to left" matching wore used in the testing fon the transitivity phoperty of the relations "as many as", "more than" and "fever than". The tripects of numers of objects used for testing for the above thece retations wete $(7,7,7)$ and $(18,8,81 ;(5,7,6)$ ond $10,8,71$; and $16,7,51$ and $17,8,91$ respectivedy. The test was ased as a thansfor measue to deteraine it an ability to use thansitivity is anhoved by instruction on the retations of concern.

An exampe of a thansitivity item for mathing relations is where there were seven red dises and seven green dises mounted in hows on posterboond. The child was directed to mateh a pie of seven bue dises with the red dises and judre the relations betveen the two sets. The red dises wete then covered. The chied ans then directed to mateh the beue dises with the green discs and fuge the relations between the two sets. The green dises were then covered. Three questions
were then asked: "Are there as nany red dises as green discs?" "the there more red discs than green discs?" and "Are there fower red dises thon green dises?". An analogous procedure was used for transitivitil of the equivalence retations involving colon and shape, except only two questions were asked, one for the appropriate equivalence nefation and one fon its accompaning diference relation. ((12, p. 130).

Administration of TR

"Items were arhanged in a row on a low table. Administration of the six itens for matching relations mas conducted followed by the four itens for the color and shape relations. Within this constraint the itens were ransomized independently for each subject. A transitivity item was scored as correct only if all questions were correctly answered. ((12), p. 132).

APPENOLX 20

Further details of the pilot stugy undertaken co clarify the etages in
the dovelopment of symmetry

List of questions used:
The questions belov were included as part of a natural conversetion with the child about the dolls. One of the purposos of the conversation was the establiohment of a euttable rapport with the child. If a question hed to be repeated, however, it was repeated exactly, as many times as required, without providing additional clues by coment or gesture. These questions differ from thone listed on pages $01-06$ in small respects only. However, it may be useful to have them listed completely here.
(See Tast A)

(See Test B)

coloured shirts. Can you tell mo the names of another two dolls who are woaring different coloured shirts?
(Soe Test D)

Question 2: Are Robert and John wearing shirts which are the same colour or are they different?

Quention 3: Are Robert and Paul wearing shirts which are the came colour or are they different?
(Sec Test E)

(red) (red)	This is Paul. I an going to say the names of	
-	two dolls and I want you to tell me whother their	
(beue) (red) shirts are the same colour or whether they are		
pauf		
		different.

1. Paul and David
2. John and Rabent
3. John and Paul
4. David and Robert.
(See Test F)

Uuestion 2: thich doll might be called David?
Question 3: John is wearing a different coloured shirt from Paul. Are Paul and David wearing shirts which are the same colour or are they different?

Question 4: thich doll is called Robert?
Question 5: Are the chirts of Paul and Robert the sane colour or different?
(See Test G)

Question 2: Are John and David wearing shirts which are the ame colour or are they different?
(See Test H)
(a) (red) (hed) Guestion 1; John and Paul are sitting together and Robert and David are sitting together. Robert and David are wearing different coloured ohirts. there are the dolls called Robert and David?
(b) (red) (red) Quention 2: John and Paul are eitting together and Robert and David are sitting together. Robert and David are wearing different coloured ehirts. Cen we tell where Robert and David are sitting?
question 3: This is Robert (blue). Just now one of the dolls

> changed his chirt from a red one to a blue one. Can you tell me which of the dolle changed his shirt?

Stages of development inferred from correct responses to the above questione

It is convenient to classify the responees according to three stages of development wich they may be taken to indicate. Still finer subdivisions may be possible, but the three otages described below are a suitable initial classification as the responees of the children confirm.

At Stage 1, in a given problem situation, the child recognizes at least one instance of a pair (x, y) such that " x is wearing a different coloured ohirt from $y^{\prime \prime}$ when certain about both individuals. Furthermore, he zecognizee non-exomplars of the basic rolation, i.e. he recognizes at least one instance of a pair (x, y) such that " x is NOT wearing a different coloured shirt from $y^{\prime \prime}$, when certain about both individuels.

At 5 tage 2 , in o given problem situation, the child recognizes at least one instance of a pair (x, y) such that " x is wearing a differont coloured shirt from $y^{\prime \prime}$ when certain about one individual only. Furthermore he recognizes non-exemplers of the basic relation, i.e, ho recornizes at least one instance of a pair (x, y) such that " x is NOT wearing a different coloured shirt from $y^{\prime \prime}$, when certain about one individual only.
N.B.

A further dictinction was nade by referring to stage 2^{*}, at which it was plain that the child could recognize more then one instance of the basic relation in a situation in which more than one instance was to be seen.

At Stage 3, in a given situation, the child recognizes at least one instance of a pair (x, y) such that " x is wearing a different coloured shirt from $y^{\prime \prime}$ when not cortain about either individual. Furthermore he recognizes non-exemplars of the basic relation, i.e. he recognizes at least one instance of a pais (x, y) such that " x is NOT wearing a different coloured shirt from $y^{\prime \prime}$, when not certain bout either individual.
N.E.

A further distinction was mate by referring to 5 tage 3^{*} at which it was plain that the child could recognize more than one instance of the basic relation in a situation in which more than one instance was to be seen.

Thus the answers to the various guestions may be taken as indicating the stages of concept formation in the following way:

A correct reeponse to
Question 1 (a), Test A implies the child recognizes a pair Question 1 (b), Test A Questions 2 and 3, Test A Question 1, Test B (x, y) such that " x is wearing a different coloured shirt from $y^{\prime \prime}$, when certain atout both individuals. (i.e. Stage 1).

A correct response to Question 2, Test 0 implies the child recognizes a pair (x, y) such that " x is NOT wearing a different coloured shirt fron $y^{\prime \prime}$, when certain about both individuals. (i.c. Stage 1 on non-exemplar

A correct response to

Quention 2, Teat D	inplies	the child rocognizen a peir (ox
Wuestion 3, Test D		pairs) (x, y) such that " x is
Quostion 1, Test E		veasing a different coloured chirt
question 3, Test E		from $y^{\prime \prime}$, when certain about one
Question 5, Test F		individual only.
Question 1, Test Q		(i.e. Stage 2)

A correst respones to
Question 1, Test H
Question 3, Test 11
implies the child recognizes a pair (or pairs) (x, y) such that " x is wearing a different coloured shirt from y^{n}, when not certain about ather individual. (i.c. Stage 3)

A correct response to
question 2, Test E implies
Question 4, Test E
Question 3, Test F
Question 2, Test G
the child recognizes a pair (or paira) (x, y) such that $" x$ is NOT vearing a different coloured shirt fron $y^{\prime \prime}$, when not certain bout either individual. (i.e. Stage 3 on non-exemplar of the basic relation).

The response "Jom and David" only to quostion 3, Test 0 , implies the child recognizes a pair (x, y) such that " x is wearing a different coloured shirt from $y^{\prime \prime}$, when certain about both individuals. A response which includes "John and David" and either "David ond Peul"
or "David and Robert" to Cuention 3, Tost B, implies the child recognizes apair (x, y) such that " x is wearing a different coloured shirt from y ", when certain about one individual only, (i.e. Stage 2).

The reenonce "Devid and Paul, and David and Robert" to Question 3, Test B, implies the child recognizes pairs (x, y) (i.e. more than one pair) ouch that " x is wearing a different coloured shirt fron y ", when certain about one individual only, (i.c. Staqe 2").

Similarly, a correct remponee to guestions 1 and 2 of Test F implies the child recognizes pairs (x, y) such that " x is wearing a different coloured shirt from $y^{\prime \prime}$, when certain about one indivictuel only, (i.e. Stage $2^{\text {" }}$).

Correspendingly, a correct response to Question 2, Test H, implies the child recognizes pairs (x, y) such that $" x$ is wearing a different coloured shirt from $y^{\prime \prime}$, when not certain about either individual, (i.e. $5 \operatorname{tage} 3^{*}$).

Results
Stage 1:

Tert A:	Question 1 (a)			$/$								1
$\begin{aligned} & \text { OR } \\ & \text { Test } A: \end{aligned}$	Queotions 2×3			x								x
	Question 1 (b)	1	$/$		$/$	1	$/$	$/$	/	/	/	
	Questions $2: 3$	x	/		x	1	\times	1	1	/	1	
Tent B:	Question 1	1	\checkmark	1	x	1	x	1		1	1	1
Stage 1 on non-exemplar of the basic relation												
Test D: Guestion 2		$/$	1	x	1	x	x	1	/		1	/
				$\begin{array}{\|c\|} \hline 2 \\ 3 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			$\begin{gathered} 3 \\ 0 \\ 5 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & \text { C } \\ & 0 \\ & \mathrm{H} \end{aligned}$	0			

Stage 2:

Test E: Question 2	1	1	x	1	1	1	1	1	$/$	\checkmark
Test D: question 3	\times	1	x	1	x	\checkmark	/	/	\checkmark	1
Test E: Question 1	1	1	\times	\times	1	1	1	\checkmark	\checkmark	\checkmark
question 3	1	1	1	\times	$/$	x	\cdots	\checkmark	$/$	$/$
Test F: Question 5	x	\times	$/$	1	/	x	\times	\times	1	1
Test G: nuestion 1	1	1	x	\times	$/$	\checkmark	1	\checkmark	x	\checkmark
Stage 2*:	$\begin{array}{r} 2 \\ 5 \\ 5 \\ \text { 娄 } \\ \text { 曷 } \end{array}$	$\begin{array}{r} 1 \\ 0 \\ n_{0}^{0} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 4 \\ 3 \\ 08 \\ 0.8 \\ 80 \end{array}$	$\begin{gathered} 3 \\ 6 \\ 6 \\ 0 \\ 0 \\ 5 \\ 5 \end{gathered}$	$\begin{array}{r} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			$\begin{array}{r} 1 \\ 6 \\ 5 \\ 5 \\ 0 \\ 0 \\ 0 \end{array}$		
Test B: question 3	1	"			*	\times	1	"	"	\times
Test F: Questions 1 and 2	\times	"	"	"	\%	"	"	"	"	"

Koy: 'Stage 1 response
"Stage 2 response - Defore giving a Stage 2 response, eye and hand movementa indicated that each child considered both possibilities but only one of the two wes selected.

Stage 3:

Test H:	Guestion 1	1	1	\times	$/$	$/$	$/$	\times	1	γ	$/$
	Question 3	x	x	x	x	0	x	x	x	\times	0
Stage 3 on non-cxemplar of the besic relation											
Test E:	Question 2	1	1	\times	x	1	1	1	1	/	$/$
	Question 4	1	1	$/$	x	1	\times	1	1	\checkmark	\checkmark
Test F:	Question 3	\times	*	x	x	/	x	$/$	\checkmark	\times	\times
Teret C :	Question 2	1	1	x	1	1	x	1	1	\times	\checkmark
$\frac{\text { Stage } 3^{*}}{\text { Tect H: }}$	Question 2		$\begin{array}{r} 2 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{gathered} 5 \\ 5 \\ 5 \\ 9 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 4 \\ =0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\left\|\begin{array}{c} 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$				$\begin{array}{r} 3 \\ 60 \\ 6 \\ 6 \\ 6 \\ 6 \\ \hline 6 \end{array}$	

Key: 0 indicates that before selecting one individua, the child's eye and hand movements showed that both were considered.
" Stage 3 repponce - Defore giving a Stage 3 response, eye and hand movenents indicated that each child considered both possibilities but only one of the two wes selocted.

Using an error count on the scoring items for each stage, we obtain

	No. of errors at		
Sinon (age 6)	0	Stage 2	Stage 3
Pan (age 5)	1	1	1
Hayley (age 7)	1	1	1
Tracy (age 6)	0	0	2
Sarah (age 5)	0	1	2
Alison (age 4)	1	1	2
Brian (age 6)	0	1	2
Daren (age 6)	3	2	4
Jason (age 6)	2	3	4
Dean (age 5)	2	4	3

These results appear to support the conjecture that the subjects' reaponses indicate at least three stages in the dovelopment of symmetry, which correspond to the stanes already specified. For, apart from two exceptione (Hayley and Daren with more orrors at Stage 1 than Stage 2), the subjects showed a steady state or increase in the number of errors from Stane 1 through to Stage 3.

Further points for consideration

Althoug the aim of this pilot study was merely to teat the feasibility of an investigation along theee lines and the suitability of the partscular guestione, it was noted that for each of the two sets of six itens used to identify Stage 2 and Stage 3, we heve 2^{6} different
sextuplee with 'corrcet' or 'incorrect' as elements. In a very similar test dituation with sextuples Steffe and Ceroy ((26), p. 20) pointed out that on the hypothosis that 'correct' and 'incorrect' anemers were equiproboble, the probobility that ony one of the 2^{6} possible eextuplec occured vas 2^{-6}. This in tum would indicate that the probobility that a child dotaned at leat 5 or 6 corsect responced by ouesoing was appoximately 0.11. This calculation is clearly open to exiticien because of the assumption of the equiprobabilities. Whilst recognizing thie weakness, wo also note that in the present investigation thero were usuelly mare than 2 possible anowers to the questions, to the actual probabilities of achieving a score of 5 or 6 by guessing should be substentially lees then the 0.11 calculated above. And se, following Steffe and Carey, a total seore of 5 or 6 was taken as the criterion score for Stago 2 and Stoge 3. This gives

	Stage 2	Stage 3
Simon (age 6)	1	1
Paul (age 5)	1	\times
Hayley (age 7)	1	\times
Tracy (age 6)	1	x
Sarah (age 5)	1	\times
Brian (age 6)	1	\times
Alieon (age 6)	\times	\times
Daren (age 6)	\times	x
Jason (age 5)	\times	x
Daan (age 5)	x	

But before propocing thet an appropriate follow-ip study be undertak to confirm or reject the exigtence of the three strges in the development of symecry, a nuber of deficiencics in the deaign of the pilot
study highlighted by the attempto identify a critorion score for Stagea 2 and 3 , need to be rectified to sotisfy this now purpose. These are

1. Insufficient scoring itens (3 only) to test Stege 1 on the basic relation.
2. Inoufficient ecoring iteme (2 only) to teet Stage 3 on the basic relation.
3. The need to check that the subject can dictinguich between pairs Which satisfy the besic relotion and pates thich do not eatisfy the basie relation, at all stages of development. Hence, the need to increase the number of items to tect Stage 1 on nonexempare of the bacic relations and to include some items to test Stage 2 on non-exemplars of the basic relation.

It is therefore proposed that at least the following quoctions be included in the sequence of tests:
"Are John and David wearing shirts Guestion 4, Test A thich are the eane colour or are (Stage 1 on non-exemplar they different?" of the basic relation).
"Are Peul and David wearing shirts Question 4; Test D which are the same colour or are (Stage 3). they different?"
and that the following test be included as Test C of the sequonce:
Test C: (Four dolls - Jom, Paul, Devid and Robert) Three of the dolls are vearing red chirts and ono is wearing a blue shixt.

Paul label and spreeds out the other two labele). I am going to say the namos of two dolls and I went you to tell ne whethex their ehirts are the sane colour or whether they are different.

1. David and Poul (Stage 1)
2. Jom and Paul (Stage 2)
3. David and John (Stage 2 on non-exemplar of besic relation)
4. Paul and Robert (Stage 2)
5. Robert and David (Stage 2 on non-exemplar of basic relation)
6. Join and Robert (Stage 3 on non-exomlar of basic relation).

All of these additional itens are similar in atructure to items which were included in the pilot study.

APSENOIX 20
Comparison of instruments desinned by Steffe and Carey and D. To Evens to test conservetion of length relations

Steffe and Carey	D.T. Ovens
Conservation of Length Relations	Conservation of Length Relations
Test	Test
Sample 1 tems:	"The Conservation of Length
"LCued I - Lonnet than	Relations (CLR) Testwas designed
Materiats: One green stran; 3	to measure the ability of a child
hed strouts, one	to conserve Rengti relations.
being Longen than,	In each iten the chied was asked
one shotter than	to cotabeish a kengh retation
and one the same	betteen who sticks (or strows)
kength os the	by answering tuo questions.
gheen strow.	Then the sticks wore rearnanged
Statoment: using these red	to produce a percoptuat bias
straus, find a	agount the correct conclusion.
stras longer than	and the questions were repeated.
this green sthow.	(22) , p. 54.

Thanshomation:
—— gheen
___ red
(nove the red strow
guestion: "Is dits red strow
stiel longer than
this green strow? .
(26), p. 44).
"Leved II - Loncer thon
Materials: One green strow. 3
wite pipe cleaners,
one being longer
that, one shotret
than, and one the
sane Eengta as the
gheen strats.
Statement: using these pipe
cleanoss, find a
prepe clearer
Qonger than this
areci sinctu.
Thanshomation:
preen strato
pipe
ceences
(nove the green stram)
guestion: "Now is the green
stron longet than
the pipe clenner?"
((26), p, 45).

APPENDIX 2 f

Further details of the Classifjcation Test used by M.L. Johnson

Classification Test

"This test consisted of thee iters: two requiring the chitd to Ghoup sticts on the basis of Rengh and one in wich the chied had to detemme the oriterio used for sticks atrecth ghouged.
The moteriak for stem 1 consisted of 12 geen sticks, each $\frac{3}{8}^{3}$ dianeren, with fout of length 5^{n}, fout of length $5 \frac{1}{4}^{11}$ and four of length 5\% . One stick of each Rength was mounted on a piece of paper bourd. The theee mounted sticks were pointed out to the chett who when instructed to "find aft of the sticks that would go with thes stich $\left(5^{\prime \prime}\right)$, this stich $\left(5^{\prime \prime}\right)$ and thes stich $\left(512^{\prime \prime}\right)$. The nine stichs to be classified were in disonder before the child. A recond of ate sticks correctly and inconteotey praced nats bept by the experinemter. The matentebs of iten 3 consisted of ten red stichs ape $\frac{3^{\prime \prime}}{}$ dianetor, thece of tength $4^{\prime \prime}$, thece of Lenoth $\frac{t^{\prime \prime}}{4}$, thee of tength $44^{\prime \prime}$, and one of length $4^{3^{\prime \prime}}$. The ton sticks were given to the cliffand he uss instructed to
"put ate of the sticks together that belong together". A recorl of the chifis actions was kept by the experimenter. Item ? required that the child determine the chiterie used for growning. The materiats for this item consisted of fifteen sticks; five each at lengen $6^{\prime \prime}, \frac{1}{4}^{\prime \prime}$, and 6 m. The stinks were pluced inte three distinct piles about 15" aport on a table. Wetiin a pire, sticks difuered in colour ond dianeter; with lenith being constont. The ched was
unstucted to
"Telt me why I have all of these sticks together in thes pile ($6^{\prime \prime}$), in this pile $\left(6^{\prime \prime}\right)$ and in this pie ($6^{2 \prime}$)." If a correct onswer was given, the child wos asked to justiks his answer. Upon justification, he whs then asted "Whe do I have these sticks in dioterent pires?" Again a justification for a conect answor was ashed for. A recond of ate anspors wh kept by the experinenter. ((27), p. 79).

Scoring Teat

"Fron the chiedren's responses to teen 1, fout perfonnance categories wore identified. They wore:
(a) the chid did not attempt to classibl stichs;
(b) the chitd mate some partiae closses but did not exhoust the set of sticks to be classinied;
(c) the child exfrausted the set but made some inconect choices; and
(d) the child correctey dassified ate sticks.

Iten 2 Five distinct ategories were identified.
Thes wete:
(a) the chied did not discover the criteria;
(b) the child gave a conrect reason for the piles being togethos but without justivication;
(c) a correct reason was aiven with jusification;
(d) in adrition to justibuing the reason for sticks betonging in distinet grows, the subject conrectly gave a reason for sticks being in diborent groups but without justivication for his reason.
(e) ale of $|d|$ with justibication.

In iten 3 Four cotegonies of perfonnance wore tiontified;
(a) no ottompt was made to group the sticks;
(b) the chied made at least two peles with the stioks being praced incontectery;
(c) the child put ofe stichs in correct pises according to fength excent the lonest stich;
(d) the chid conrectet classified abe sticks, inchuding the fongest stick.
((27), p. 85-86).

[^0]: * A group ($c, 0$) is a set G with a binary operation o defined on it with the following properties
 (i) 0 is clused,
 (ii) o is associative,
 (iii) there is an identity element $e \in \mathbb{G}$ such that for all $a \in \mathbb{G}$, a $0 e=a=e \mathrm{c} a$,
 (iv) for any element $a \in G$, there is an inverse element $b \in G$ auch that

 $$
 a<b=e=b<a .
 $$

 ** A lattice is a partially ordered set in which a subset conposed of any two elements has both a least upper bound and a greater lower bound.

[^1]: *In this Anerican paper a strict partial ordering relation has been defined as follows:

[^2]: "The test situations associated with Grouping I - Primary Addition of Clesses, and Grouping V - Addition of Asymetrical Relations, focus on the child's ability

 - to think of a set and subsets of that set simultaneously,
 - to build up elements into an asymmetrical, trancitive series,
 respectivoly. In contract, the test situations associated with
 Grouping III - Bi-univocal Multiplicetion of Classes, and Grouping VII - Bi-univocal hultiplication of Relations, focus on the child's capacity
 - to find the intersection (logicel product) of two or nore sets,

[^3]: * (contd)
 unseriated elenents as the basis of all Grouping III operations. seriated elements as the basis of all Erouping VII operations.

[^4]: *The chief method of the transitivity training was what has been termed fixed practice with empirical control (Snedslund, J. "The acquisition of transitivity of weight in five- to seven-year-old children", Journal of Genetic Psychology, 1963, 102, p. 245-255). The instructor gave explicit instructions for comparing sets A and B, then B and C. Sets A and C were compared after the child made a prediction of the relation between then.

[^5]: *See footnote on page 37.

[^6]: * For 'nonreflexive' read 'antireflexive' - see footnote on page 31.

[^7]: *For 'nonreflexive' read 'antireflexive' - see footnote on page 31.

[^8]: *

 For 'nonrenlexive' read 'entireflexive' - see footnote on page 31.

[^9]: *For 'nonreflexive' read 'entireflexive' - see footnote on page 31.

[^10]: * For 'nonreflexive' read 'antireflexive' - see footnote on page 37. (1)

 Smedelund, J. "Development of concrete transitivity of length in children", Child Develapment:, 1963, 34, p. 399-405).

[^11]: (1)

 Shedslund, J. "Concrete reasoning: A study of intellectual development", Monographo of the Socicty for Research in Child Development, 1964,20 (Serial No. 93).
 (2)

 Owens, D.T. and Steffe, L.i. "Performance of kindergerten children on transitivity of three matching reletions", Journal for Revearch in Nathematics Education, 1972, 3, p. 141-154.
 (3) Divers, B.P. Jr. "The ability of kindergarten and first grade children to use the transitive property of three lenoth relations in three perceptual situations", Unpubiished doctoral diseortation, University of Georgia, 1970.

[^12]: *For 'nonreflexive' read 'entireflexive' - see footnote on page 31.

[^13]: * The procedure by which P produces a could also be described as forming the reflexive, symmetric, transitive hull of 5 , as an obvious extension of Appendix Ra. 0 could also be defined as $\cap \Omega$ where R is the family of all equivalence relations on A each of which contains S.

