284 research outputs found
Nonlocal complex potential theory of dissociative electron attachment: Inclusion of two vibrational modes
The process of dissociative electron attachment (DEA) to molecules with several vibrational degrees of freedom is usually treated in the approximation of the local potential for the description of the nuclear motion. We develop the nonlocal complex potential theory to treat the dissociation dynamics when there is more than one vibrational mode in the neutral molecule. We demonstrate the application of the multimode nonlocal theory to a generic molecule of the type CY3X, where Y denotes the H or F atom and X denotes the halogen atom, with the inclusion of symmetric CâX stretch and CY3 deform (âumbrellaâ) vibrational modes. We present results for the dependence of DEA cross sections on the electron energy and vibrational energy for the CF3Cl molecule in the two-mode approximation. The 1.5 eV peak in the DEA cross section is well described in the one-mode approximation. However, inclusion of additional modes is required to explain the experimentally observed low-energy peak in the DEA cross section at the vibrational temperature Tv = 800 K
Semiclassical theory of laser-assisted radiative recombination
We study the process of laser-assisted radiative recombination of an electron with a proton by using a semiclassical approach involving calculation of classical trajectories in combined laser and Coulomb fields. Due to chaotic scattering in the combined fields, the radiation probability as a function of the impact parameter and the constant phase of the laser field exhibits chaotic behavior and fractal structures. We obtain a strong enhancement of the recombination cross section as compared to the laser-free case due to the Coulomb focusing effect. For sufficiently low incident electron velocities the cross section becomes infinite, and we limit it by assuming a finite laser pulse duration. With the pulse duration tp = 5 ps we obtain the gain factor for capture into the ground state of the hydrogen atom of about 220 for infrared fields in the intensity range 109â1012 W/cm2. The gain factor grows with tp but slower than linearly
Classical theory of laser-assisted spontaneous bremsstrahlung
We study the process of laser-assisted spontaneous electron bremsstrahlung by running classical trajectories in a combined Coulomb and laser (ac) fields. Due to chaotic scattering in the combined Coulomb and ac fields, the radiation probability as a function of the impact parameter and the constant phase of the laser field exhibits fractal structures. However, these structures are smeared out when the cross section is integrated over the impact parameter and averaged over the phase. We analyze the role of different types of orbits, including the trapped orbits, and the dependence of the radiation probability on the impact parameter and the initial phase of the ac field.We show that, at low incident electron kinetic energy, the Coulomb focusing leads to a substantial extension of the range of impact parameters contributing to the bremsstrahlung cross section and results in a substantial increase (by one to two orders of magnitude) of the cross section as compared with the pure Coulomb case. As examples, we discuss the case of relatively high ponderomotive energy Ep when we obtain an efficient production of photons with frequencies up to 2Ep, and the case of low Ep when only infrared photons are produced. Overall accuracy of the classical approach is estimated to be very good, although it does not describe resonant processes studied previously by quantum-mechanical methods
Semiclassical theory of laser-assisted dissociative recombination
We study the process of laser-assisted dissociative recombination of an electron with a molecular cation using a semiclassical approach. In the region outside a reaction sphere the electron motion in the combined laser and Coulomb fields is treated classically. Within the sphere the laser-field effects are neglected, and the recombination probability is obtained from quantum-mechanical cross sections calculated for the laser-free process. Specific calculations are performed for dissociative recombination of H2+ in the field of the intensity 2.09 GW/cm2 and the wavelength 22.8 ÎŒm. In the energy region above 1 meV the cross section is significantly enhanced compared with the field-free case due to the Coulomb focusing effect. The influence of the indirect process due to electron capture into Rydberg states is also investigated. Although the Rydberg resonances are washed out due to the field effects, they influence significantly the magnitude of the dissociative recombination cross section
Scale Invariance in Road Networks
We study the topological and geographic structure of the national road
networks of the United States, England and Denmark. By transforming these
networks into their dual representation, where roads are vertices and an edge
connects two vertices if the corresponding roads ever intersect, we show that
they exhibit both topological and geographic scale invariance. That is, we show
that for sufficiently large geographic areas, the dual degree distribution
follows a power law with exponent 2.2 < alpha < 2.4, and that journeys,
regardless of their length, have a largely identical structure. To explain
these properties, we introduce and analyze a simple fractal model of road
placement that reproduces the observed structure, and suggests a testable
connection between the scaling exponent alpha and the fractal dimensions
governing the placement of roads and intersections.Comment: 6 pages, 10 figures; revision incorporates more rigorous statistical
analyses; matches journal versio
Coupled-Channel Theory of Photoionization Microscopy
We develop a quantum-mechanical coupled-channel theory to simulate spatial distributions of electron current densities, produced in photoionization for nonhydrogenic atoms in the presence of a uniform external electric field. The coupled Schrodinger equations are numerically solved using the renormalized Numerov method. The expression for the outgoing wave function for photoelectrons ejected from the nonhydrogenic atomic source is derived. The theory is applied to investigations of photoionization for ground-state Li atoms. The distributions of electron current densities are computed and compared to the corresponding experimental images. Excellent agreement is obtained. It is, furthermore, found that the presence of the nonhydrogenic residual ion significantly changes the differential cross sections and/or electron current densities with respect to the hydrogenic case. Finally, the implications of the presence of the atomic core for quantum resonance tunneling are also analyzed
Modifying the photodetachment near a metal surface by a weak electric field
We show the photodetachment cross sections of H near a metal surface can be
modified using a weak static electric field. The modification is possible
because the oscillatory part of the cross section near a metal surface is
directly connected with the transit-time and the action of the
detached-electron closed-orbit which can be changed systematically by varying
the static electric field strength. Photodetachment cross sections for various
photon energies and electric field values are calculated and displayed.Comment: 16 pages, 7 figure
Ballistic matter waves with angular momentum: Exact solutions and applications
An alternative description of quantum scattering processes rests on
inhomogeneous terms amended to the Schroedinger equation. We detail the
structure of sources that give rise to multipole scattering waves of definite
angular momentum, and introduce pointlike multipole sources as their limiting
case. Partial wave theory is recovered for freely propagating particles. We
obtain novel results for ballistic scattering in an external uniform force
field, where we provide analytical solutions for both the scattering waves and
the integrated particle flux. Our theory directly applies to p-wave
photodetachment in an electric field. Furthermore, illustrating the effects of
extended sources, we predict some properties of vortex-bearing atom laser beams
outcoupled from a rotating Bose-Einstein condensate under the influence of
gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and
semiclassical theor
Highly optimized tolerance and power laws in dense and sparse resource regimes
Power law cumulative frequency vs. event size distributions
are frequently cited as evidence for complexity and
serve as a starting point for linking theoretical models and mechanisms with
observed data. Systems exhibiting this behavior present fundamental
mathematical challenges in probability and statistics. The broad span of length
and time scales associated with heavy tailed processes often require special
sensitivity to distinctions between discrete and continuous phenomena. A
discrete Highly Optimized Tolerance (HOT) model, referred to as the
Probability, Loss, Resource (PLR) model, gives the exponent as a
function of the dimension of the underlying substrate in the sparse
resource regime. This agrees well with data for wildfires, web file sizes, and
electric power outages. However, another HOT model, based on a continuous
(dense) distribution of resources, predicts . In this paper we
describe and analyze a third model, the cuts model, which exhibits both
behaviors but in different regimes. We use the cuts model to show all three
models agree in the dense resource limit. In the sparse resource regime, the
continuum model breaks down, but in this case, the cuts and PLR models are
described by the same exponent.Comment: 19 pages, 13 figure
- âŠ