108 research outputs found

    First-principles study of the energetics of charge and cation mixing in U_{1-x} Ce_x O_2

    Full text link
    The formalism of electronic density-functional-theory, with Hubbard-U corrections (DFT+U), is employed in a computational study of the energetics of U_{1-x} Ce_x O_2 mixtures. The computational approach makes use of a procedure which facilitates convergence of the calculations to multiple self-consistent DFT+U solutions for a given cation arrangement, corresponding to different charge states for the U and Ce ions in several prototypical cation arrangements. Results indicate a significant dependence of the structural and energetic properties on the nature of both charge and cation ordering. With the effective Hubbard-U parameters that reproduce well the measured oxidation-reduction energies for urania and ceria, we find that charge transfer between U(IV) and Ce(IV) ions, leading to the formation of U(V) and Ce(III), gives rise to an increase in the mixing energy in the range of 4-14 kJ/mol of formula unit, depending on the nature of the cation ordering. The results suggest that although charge transfer between uranium and cerium ions is disfavored energetically, it is likely to be entropically stabilized at the high temperatures relevant to the processing and service of urania-based solid solutions.Comment: 8 pages, 6 figure

    Postmetamorphic ontogenetic allometry and the evolution of skull shape in Nest-building frogs Leptodactylus (Anura: Leptodactylidae)

    Get PDF
    Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest-building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life-cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large-scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.Fil: Duport Bru, Ana Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Ponssa, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Vera Candioti, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentin

    Terrestrialization, Miniaturization and Rates of Diversification in African Puddle Frogs (Anura: Phrynobatrachidae)

    Get PDF
    Terrestrialization, the evolution of non-aquatic oviposition, and miniaturization, the evolution of tiny adult body size, are recurring trends in amphibian evolution, but the relationships among the traits that characterize these phenomena are not well understood. Furthermore, these traits have been identified as possible “key innovations” that are predicted to increase rates of speciation in those lineages in which they evolve. We examine terrestrialization and miniaturization in sub-Saharan puddle frogs (Phrynobatrachidae) in a phylogenetic context to investigate the relationship between adaptation and diversification through time. We use relative dating techniques to ascertain if character trait shifts are associated with increased diversification rates, and we evaluate the likelihood that a single temporal event can explain the evolution of those traits. Results indicate alternate reproductive modes evolved independently in Phrynobatrachus at least seven times, including terrestrial deposition of eggs and terrestrial, non-feeding larvae. These shifts towards alternate reproductive modes are not linked to a common temporal event. Contrary to the “key innovations” hypothesis, clades that exhibit alternate reproductive modes have lower diversification rates than those that deposit eggs aquatically. Adult habitat, pedal webbing and body size have no effect on diversification rates. Though these traits putatively identified as key innovations for Phrynobatrachus do not seem to be associated with increased speciation rates, they may still provide opportunities to extend into new niches, thus increasing overall diversity

    Body Size Evolution in Extant Oryzomyini Rodents: Cope's Rule or Miniaturization?

    Get PDF
    At the macroevolutionary level, one of the first and most important hypotheses that proposes an evolutionary tendency in the evolution of body sizes is “Cope's rule". This rule has considerable empirical support in the fossil record and predicts that the size of species within a lineage increases over evolutionary time. Nevertheless, there is also a large amount of evidence indicating the opposite pattern of miniaturization over evolutionary time. A recent analysis using a single phylogenetic tree approach and a Bayesian based model of evolution found no evidence for Cope's rule in extant mammal species. Here we utilize a likelihood-based phylogenetic method, to test the evolutionary trend in body size, which considers phylogenetic uncertainty, to discern between Cope's rule and miniaturization, using extant Oryzomyini rodents as a study model. We evaluated body size trends using two principal predictions: (a) phylogenetically related species are more similar in their body size, than expected by chance; (b) body size increased (Cope's rule)/decreased (miniaturization) over time. Consequently the distribution of forces and/or constraints that affect the tendency are homogenous and generate this directional process from a small/large sized ancestor. Results showed that body size in the Oryzomyini tribe evolved according to phylogenetic relationships, with a positive trend, from a small sized ancestor. Our results support that the high diversity and specialization currently observed in the Oryzomyini tribe is a consequence of the evolutionary trend of increased body size, following and supporting Cope's rule

    Telomeres and telomerase in head and neck squamous cell carcinoma: from pathogenesis to clinical implications

    Full text link

    Use of a ROSA26:GFP transgenic line for long-term Xenopus fate-mapping studies

    No full text
    Widespread and persistent marker expression is a prerequisite for many transgenic applications, including chimeric transplantation studies. Although existing transgenic tools for the clawed frog, Xenopus laevis, offer a number of promoters that drive widespread expression during embryonic stages, obtaining transgene expression through metamorphosis and into differentiated adult tissues has been difficult to achieve with this species. Here we report the application of the murine ROSA26 promoter in Xenopus. GFP is expressed in every transgenic tissue and cell type examined at post-metamorphic stages. Furthermore, transgenic ROSA26:GFP frogs develop normally, with no apparent differences in growth or morphology relative to wild-type frogs. ROSA26 transgenes may be used as a reliable marker for embryonic fate-mapping of adult structures in Xenopus laevis. Utility of this transgenic line is illustrated by its use in a chimeric grafting study that demonstrates the derivation of the adult bony jaw from embryonic cranial neural crest
    corecore