931 research outputs found

    Wave Solutions of Evolution Equations and Hamiltonian Flows on Nonlinear Subvarieties of Generalized Jacobians

    Full text link
    The algebraic-geometric approach is extended to study solutions of N-component systems associated with the energy dependent Schrodinger operators having potentials with poles in the spectral parameter, in connection with Hamiltonian flows on nonlinear subvariaties of Jacobi varieties. The systems under study include the shallow water equation and Dym type equation. The classes of solutions are described in terms of theta-functions and their singular limits by using new parameterizations. A qualitative description of real valued solutions is provided

    Transition from a phase-segregated state to single-phase incommensurate sodium ordering in Na_xCoO_2 with x \approx 0.53

    Get PDF
    Synchrotron X-ray diffraction investigations of two single crystals of Na_xCoO_2 from different batches with composition x = 0.525-0.530 reveal homogeneous incommensurate sodium ordering with propagation vector (0.53 0.53 0) at room-temperature. The incommensurate (qq0) superstructure exists between 220 K and 430 K. The value of q varies between q = 0.514 and 0.529, showing a broad plateau at the latter value between 260 K and 360 K. On cooling, unusual reversible phase segregation into two volume fractions is observed. Below 220 K, one volume fraction shows the well-known commensurate orthorhombic x = 0.50 superstructure, while a second volume fraction with x = 0.55 exhibits another commensurate superstructure, presumably with a 6a x 6a x c hexagonal supercell. We argue that the commensurate-to-incommensurate transition is an intrinsic feature of samples with Na concentrations x = 0.5 + d with d ~ 0.03.Comment: Corrected/improved versio

    Enhancement of singly and multiply strangeness in p-Pb and Pb-Pb collisions at 158A GeV/c

    Get PDF
    The idea that the reduction of the strange quark suppression in string fragmentation leads to the enhancement of strange particle yield in nucleus-nucleus collisions is applied to study the singly and multiply strange particle production in p-Pb and Pb-Pb collisions at 158A GeV/c. In this mechanism the strange quark suppression factor is related to the effective string tension, which increases in turn with the increase of the energy, of the centrality and of the mass of colliding system. The WA97 observation that the strange particle enhancement increases with the increasing of centrality and of strange quark content in multiply strange particles in Pb-Pb collisions with respect to p-Pb collisions was accounted reasonably.Comment: 8 pages, 3 PostScript figures, in Latex form. submitted to PR

    Anti-Hyperon Enhancement through Baryon Junction Loops

    Get PDF
    The baryon junction exchange mechanism recently proposed to explain valence baryon number transport in nuclear collisions is extended to study midrapidity anti-hyperon production. Baryon junction-anti-junction (J anti-J) loops are shown to enhance anti-Lambda, anti-Xi, anti-Omega yields as well as lead to long range rapidity correlations. Results are compared to recent WA97 Pb + Pb -> Y + anti-Y + X data.Comment: 10 pages, 4 figure

    Excitation of weakly bound Rydberg electrons by half-cycle pulses

    Full text link
    The interaction of a weakly bound Rydberg electron with an electromagnetic half-cycle pulse (HCP) is described with the help of a multidimensional semiclassical treatment. This approach relates the quantum evolution of the electron to its underlying classical dynamics. The method is nonperturbative and is valid for arbitrary spatial and temporal shapes of the applied HCP. On the basis of this approach angle- and energy-resolved spectra resulting from the ionization of Rydberg atoms by HCPs are analyzed. The different types of spectra obtainable in the sudden-impact approximation are characterized in terms of the appearing semiclassical scattering phenomena. Typical modifications of the spectra originating from finite pulse effects are discussed.Comment: Submitted to Phys. Rev.

    An Integrable Shallow Water Equation with Linear and Nonlinear Dispersion

    Full text link
    We study a class of 1+1 quadratically nonlinear water wave equations that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation, yet still preserves integrability via the inverse scattering transform (IST) method. This IST-integrable class of equations contains both the KdV equation and the CH equation as limiting cases. It arises as the compatibility condition for a second order isospectral eigenvalue problem and a first order equation for the evolution of its eigenfunctions. This integrable equation is shown to be a shallow water wave equation derived by asymptotic expansion at one order higher approximation than KdV. We compare its traveling wave solutions to KdV solitons.Comment: 4 pages, no figure

    From the Singular to the Plural: Exploring Diversities in Contemporary Childhoods in sub-Saharan Africa

    Get PDF
    The challenges that sub-Saharan Africa has faced in the post-colonial period have come to characterise the way the region is perceived. These narratives are especially evident in the various ways children’s lives are discussed, leading to a particular focus on childhoods in difficult circumstances or at the margins. This has eclipsed the mundanities of everyday life for many children whose lives are not characterised by ‘lacks’. This article seeks to move beyond an overwhelming focus on childhoods defined by what they lack by illustrating the multitude of childhoods which exist in the continent

    Hydrodynamical analysis of symmetric nucleus-nucleus collisions at CERN/SPS energies

    Full text link
    We present a coherent theoretical study of ultrarelativistic heavy-ion data obtained at the CERN/SPS by the NA35/NA49 Collaborations using 3+1-dimensional relativistic hydrodynamics. We find excellent agreement with the rapidity spectra of negative hadrons and protons and with the correlation measurements in two experiments: S+SS+S at 200 AGeVAGeV and Pb+PbPb+Pb at 160 AGeVAGeV (preliminary results). Within our model this implies that for Pb+PbPb+Pb (S+SS+S) a quark-gluon-plasma of initial volume 174 fm3fm^3 (24 fm3fm^3) with a lifetime 3.4 fm/cfm/c (1.5 fm/cfm/c) was formed. It is found that the Bose-Einstein correlation measurements do not determine the maximal effective radii of the hadron sources because of the large contributions from resonance decay at small momenta. Also within this study we present an NA49 acceptance corrected two-pion Bose-Einstein correlation function in the invariant variable, QinvQ_{inv}.Comment: 21 pages, 11 Postscript figures (1 File, 775654 Bytes, has to be requested for submission via e.mail from [email protected]

    On a Camassa-Holm type equation with two dependent variables

    Full text link
    We consider a generalization of the Camassa Holm (CH) equation with two dependent variables, called CH2, introduced by Liu and Zhang. We briefly provide an alternative derivation of it based on the theory of Hamiltonian structures on (the dual of) a Lie Algebra. The Lie Algebra here involved is the same algebra underlying the NLS hierarchy. We study the structural properties of the CH2 hierarchy within the bihamiltonian theory of integrable PDEs, and provide its Lax representation. Then we explicitly discuss how to construct classes of solutions, both of peakon and of algebro-geometrical type. We finally sketch the construction of a class of singular solutions, defined by setting to zero one of the two dependent variables.Comment: 22 pages, 2 figures. A few typos correcte

    Various Models for Pion Probability Distributions from Heavy-Ion Collisions

    Get PDF
    Various models for pion multiplicity distributions produced in relativistic heavy ion collisions are discussed. The models include a relativistic hydrodynamic model, a thermodynamic description, an emitting source pion laser model, and a description which generates a negative binomial description. The approach developed can be used to discuss other cases which will be mentioned. The pion probability distributions for these various cases are compared. Comparison of the pion laser model and Bose-Einstein condensation in a laser trap and with the thermal model are made. The thermal model and hydrodynamic model are also used to illustrate why the number of pions never diverges and why the Bose-Einstein correction effects are relatively small. The pion emission strength η\eta of a Poisson emitter and a critical density ηc\eta_c are connected in a thermal model by η/nc=e−m/T<1\eta/n_c = e^{-m/T} < 1, and this fact reduces any Bose-Einstein correction effects in the number and number fluctuation of pions. Fluctuations can be much larger than Poisson in the pion laser model and for a negative binomial description. The clan representation of the negative binomial distribution due to Van Hove and Giovannini is discussed using the present description. Applications to CERN/NA44 and CERN/NA49 data are discussed in terms of the relativistic hydrodynamic model.Comment: 12 pages, incl. 3 figures and 4 tables. You can also download a PostScript file of the manuscript from http://p2hp2.lanl.gov/people/schlei/eprint.htm
    • 

    corecore