51 research outputs found

    Semantic multimedia remote display for mobile thin clients

    Get PDF
    Current remote display technologies for mobile thin clients convert practically all types of graphical content into sequences of images rendered by the client. Consequently, important information concerning the content semantics is lost. The present paper goes beyond this bottleneck by developing a semantic multimedia remote display. The principle consists of representing the graphical content as a real-time interactive multimedia scene graph. The underlying architecture features novel components for scene-graph creation and management, as well as for user interactivity handling. The experimental setup considers the Linux X windows system and BiFS/LASeR multimedia scene technologies on the server and client sides, respectively. The implemented solution was benchmarked against currently deployed solutions (VNC and Microsoft-RDP), by considering text editing and WWW browsing applications. The quantitative assessments demonstrate: (1) visual quality expressed by seven objective metrics, e.g., PSNR values between 30 and 42 dB or SSIM values larger than 0.9999; (2) downlink bandwidth gain factors ranging from 2 to 60; (3) real-time user event management expressed by network round-trip time reduction by factors of 4-6 and by uplink bandwidth gain factors from 3 to 10; (4) feasible CPU activity, larger than in the RDP case but reduced by a factor of 1.5 with respect to the VNC-HEXTILE

    Towards a multimedia remote viewer for mobile thin clients

    Get PDF
    Be there a traditional mobile user wanting to connect to a remote multimedia server. In order to allow them to enjoy the same user experience remotely (play, interact, edit, store and share capabilities) as in a traditional fixed LAN environment, several dead-locks are to be dealt with: (1) a heavy and heterogeneous content should be sent through a bandwidth constrained network; (2) the displayed content should be of good quality; (3) user interaction should be processed in real-time and (4) the complexity of the practical solution should not exceed the features of the mobile client in terms of CPU, memory and battery. The present paper takes this challenge and presents a fully operational MPEG-4 BiFS solution

    Cloud-Based Desktop Services for Thin Clients

    Full text link

    Accepted for Photonic Network Communications

    Get PDF
    Abstract-When deploying Grid infrastructure, the problem of dimensioning arises: how many servers to provide, where to place them, and which network to install for interconnecting server sites and users generating Grid jobs? In contrast to classical optical network design problems, it is typical of optical Grids that the destination of traffic (jobs) is not known beforehand. This leads to so-called anycast routing of jobs. For network dimensioning, this implies the absence of a clearly defined (source,destination)-based traffic matrix, since only the origin of Grid jobs (and their data) is known, but not their destination. The latter depends not only on the state of Grid resources, including network, storage, and computational resources, but also the Grid scheduling algorithm used. We present a phased solution approach to dimension all these resources, and use it to evaluate various scheduling algorithms in two European network case studies. Results show that the Grid scheduling algorithm has a substantial impact on the required network capacity. This capacity can be minimized by appropriately choosing a (reasonably small) number of server site locations: an optimal balance can be found, in between the single server site case requiring a lot of network traffic to this single location, and an overly fragmented distribution of server capacity over too many sites without much statistical multiplexing opportunities, and hence a relatively large probability of not finding free servers at nearby sites

    Scalable Impairment-Aware Anycast Routing in Multi-Domain Optical Grid Networks

    Get PDF
    ABSTRACT In optical Grid networks, the main challenge is to account for not only network parameters, but also for resource availability. Anycast routing has previously been proposed as an effective solution to provide job scheduling services in optical Grids, offering a generic interface to access Grid resources and services. The main weakness of this approach is its limited scalability, especially in a multi-domain scenario. This paper proposes a novel anycast proxy architecture, which extends the anycast principle to a multi-domain scenario. The main purpose of the architecture is to perform aggregation of resource and network states, and as such improve computational scalability and reduce control plane traffic. Furthermore, the architecture has the desirable properties of allowing Grid domains to maintain their autonomy and hide internal configuration details from other domains. Finally, we propose an impairment-aware anycast routing algorithm that incorporates the main physical layer characteristics of large-scale optical networks into its path computation process. By integrating the proposed routing scheme into the introduced architecture we demonstrate significant network performance improvements. Keywords: Grid computing, routing algorithms, optical networks, physical impairments, anycast routing. INTRODUCTION Today, the need for network systems to support storage and computing services for science and business, is often satisfied by relatively isolated computing infrastructure (clusters). Migration to truly distributed and integrated applications requires optimization and (re)design of the underlying network technology to create a Grid platform for the cost and resource efficient delivery of network services with substantial data transfer, processing power and/or data storage requirements. Optical networks offer an undeniable potential for the Grid, given their proven track-record in the context of high-speed, long-haul, networking. Not only eScience applications dealing with large experimental data sets (e.g. particle physics) but also business/consumer oriented applications can benefit from optical Grid infrastructure [1]: both the high data rates typical of eScience applications and the low latency requirements of consumer/business applications (cf. interactivity) can effectively be addressed. When using transparent WDM as such network technology, signals are transported end-to-end optically without being converted to the electrical domain in between. Connection provisioning of all-optical connections (lightpaths) between source and destination nodes is based on specific routing and wavelength assignment algorithms (RWA). Traditional RWA schemes only account for network conditions such as connectivity and available capacity, without considering physical layer details. However, in transparent optical networks covering large geographical areas, the optical signal experiences the accumulation of physical impairments through transmission and switching, possibly resulting in unacceptable signal quality Another emerging and challenging task in distributed and heterogeneous computing environments, is job scheduling: when and where to execute a given Grid job, based on the requirements of the job (for instance a deadline and minimal computational power) and the current state of the network and resources. Traditionally, a local scheduler optimizes utilization and performance of a single Grid site, while a meta-scheduler is distributes workload across different sites. Current implementations of these (meta-)schedulers only account for Grid resource availability In this paper we propose a novel architecture to support impairment-aware anycast routing for large-scale optical Grid networks. Section 2 discusses general approaches to support multi-domain networks. We then proceed to introduce a novel architecture, which can provide anycast Grid services in a multi-domain scenario (Section 3). Simulation analysis is used to demonstrate the improved scalability without incurring significant performance loss. Furthermore, Section 4 shows how to incorporate physical layer impairments, to further improve the performance of optical Grid networks. Conclusions are presented in Section 5

    Resonant cavity LED's optimized for coupling to polymer optical fibers

    Full text link
    • …
    corecore