51 research outputs found

    Polarized Growth in the Absence of F-Actin in Saccharomyces cerevisiae Exiting Quiescence

    Get PDF
    Polarity establishment and maintenance are crucial for morphogenesis and development. In budding yeast, these two intricate processes involve the superposition of regulatory loops between polarity landmarks, RHO GTPases, actin-mediated vesicles transport and endocytosis. Deciphering the chronology and the significance of each molecular step of polarized growth is therefore very challenging.We have taken advantage of the fact that yeast quiescent cells display actin bodies, a non polarized actin structure, to evaluate the role of F-actin in bud emergence. Here we show that upon exit from quiescence, actin cables are not required for the first steps of polarized growth. We further show that polarized growth can occur in the absence of actin patch-mediated endocytosis. We finally establish, using latrunculin-A, that the first steps of polarized growth do not require any F-actin containing structures. Yet, these structures are required for the formation of a bona fide daughter cell and cell cycle completion. We propose that upon exit from quiescence in the absence of F-actin, secretory vesicles randomly reach the plasma membrane but preferentially dock and fuse where polarity cues are localized, this being sufficient to trigger polarized growth

    A Microarray-Based Genetic Screen for Yeast Chronological Aging Factors

    Get PDF
    Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA “bar-code” sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes), which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose) restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Δ mutant and exacerbated by a short-lived atg16Δ autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process

    Yeast GMP kinase mutants constitutively express AMP biosynthesis genes by phenocopying a hypoxanthine-guanine phosphoribosyltransferase defect.

    No full text
    We have characterized a new locus, BRA3, leading to deregulation of the yeast purine synthesis genes (ADE genes). We show that bra3 mutations are alleles of the GUK1 gene, which encodes GMP kinase. The bra3 mutants have a low GMP kinase activity, excrete purines in the medium, and show vegetative growth defects and resistance to purine base analogs. The bra3 locus also corresponds to the previously described pur5 locus. Several lines of evidence indicate that the decrease in GMP kinase activity in the bra3 mutants results in GMP accumulation and feedback inhibition of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), encoded by the HPT1 gene. First, guk1 and hpt1 mutants share several phenotypes, such as adenine derepression, purine excretion, and 8-azaguanine resistance. Second, overexpression of HPT1 allows suppression of the deregulated phenotype of the guk1 mutants. Third, we show that purified yeast HGPRT is inhibited by GMP in vitro. Finally, incorporation of hypoxanthine into nucleotides is similarly diminished in hpt1 and guk1 mutants in vivo. We conclude that the decrease in GMP kinase activity in the guk1 mutants results in deregulation of the ADE gene expression by phenocopying a defect in HGPRT. The possible occurrence of a similar phenomenon in humans is discussed

    Identification of nuclear genes which participate to mitochondrial translation in Saccharomyces cerevisiae.

    No full text
    The mitochondrial protein synthesis presents specific features and uses specific components different from their cytoplasmic counterparts. Since most genes which code for these components are localized in the chromosomes and only a small number are encoded by the mitochondrial DNA, it is important to identify and characterize the nuclear genes involved in this process. In order to do this, we have used a genetic screening which implies the selection and study of nuclear suppressors of mitochondrial mutations (or the reverse situation) which affect the mitochondrial protein synthesis. Three mutations have been used for this purpose. Two of them (ts 1398, cs 909) impair the mitochondrial ribosome; they were used to characterize new interacting components as well as two genes, MBR1 and MBR2, which control the assembly or the regulation of other genes involved in mitochondrial protein synthesis. The third mutation (ts 932), blocks the 3'-end maturation of the mitochondrial aspartyl tRNA. A nuclear suppressor has been obtained which presents all the characteristics of a mutation in the gene encoding the enzyme responsible for this process

    Mutations in the yeast Myb-like protein Bas1p resulting in discrimination between promoters in vivo but notin vitro.

    No full text
    Bas1p is a yeast transcription factor that activates expression of purine and histidine biosynthesis genes in response to extracellular purine limitation. The N-terminal part of Bas1p contains an Myb-like DNA binding domain composed of three tryptophan-rich imperfect repeats. We show that mutating the conserved tryptophan residues in the DNA binding domain of Bas1p severely impairs in vivo activation of target genes and in vitro DNA binding of Bas1p. We also found that two mutations (H34L and W42A) in the first repeat make Bas1p discriminate between promoters in vivo . These two BAS1 mutants are able to activate expression of an HIS4-lacZ fusion but not that of ADE1-lacZ or ADE17-lacZ fusions. Surprisingly, these mutant proteins bind equally well to the three promoters in vitro , suggesting that the mutations affect the interaction of Bas1p with some promoter-specific factor(s) in vivo . By mutating a potential nucleotide binding site in the DNA binding domain of Bas1p, we also show that this motif does not play a major role in purine regulation of Bas1p activity. Finally, using a green fluorescence protein (GFP)-Bas1p fusion, we establish the strict nuclear localization of Bas1p and show that it is not affected by extracellular adenine

    The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms.

    No full text
    In Saccharomyces cerevisiae, carbon and nitrogen metabolisms are connected via the incorporation of ammonia into glutamate; this reaction is catalyzed by the NADP-dependent glutamate dehydrogenase (NADP-GDH) encoded by the GDH1 gene. In this report, we show that the GDH1 gene requires the CCAAT box-binding activator (HAP complex) for optimal expression. This conclusion is based on several lines of evidence: (1) overexpression of GDH1 can correct the growth defect of hap2 and hap3 mutants on ammonium sulfate as a nitrogen source, (ii) Northern (RNA) blot analysis shows that the steady-state level of GDH1 mRNA is strongly lowered in a hap2 mutant, (iii) expression of a GDH1-lacZ fusion is drastically reduced in hap mutants, (iv) NADP-GDH activity is several times lower in the hap mutants compared with that in the isogenic wild-type strain, and finally, (v) site-directed mutagenesis of two consensual HAP binding sites in the GDH1 promoter strongly reduces expression of GDH1 and makes it HAP independent. Expression of GDH1 is also regulated by the carbon source, i.e., expression is higher on lactate than on ethanol, glycerol, or galactose, with the lowest expression being found on glucose. Finally, we show that a hap2 mutation does not affect expression of other genes involved in nitrogen metabolism (GDH2, GLN1, and GLN3 encoding, respectively, the NAD-GDH, glutamine synthetase, and a general activator of several nitrogen catabolic genes). The HAP complex is known to regulate expression of several genes involved in carbon metabolism; its role in the control of GDH1 gene expression, therefore, provides evidence for a cross-pathway regulation between carbon and nitrogen metabolisms

    Dysregulation of purine nucleotide biosynthesis pathways modulates cisplatin cytotoxicity in Saccharomyces cerevisiae.

    No full text
    International audienc
    corecore