67 research outputs found

    Suppression of nuclear spin diffusion at a GaAs/AlGaAs interface measured with a single quantum dot nano-probe

    Full text link
    Nuclear spin polarization dynamics are measured in optically pumped individual GaAs/AlGaAs interface quantum dots by detecting the time-dependence of the Overhauser shift in photoluminescence (PL) spectra. Long nuclear polarization decay times of ~ 1 minute have been found indicating inefficient nuclear spin diffusion from the GaAs dot into the surrounding AlGaAs matrix in externally applied magnetic field. A spin diffusion coefficient two orders lower than that previously found in bulk GaAs is deduced.Comment: 5 pages, 3 figures, submitted to Phys Rev

    Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}

    Full text link
    Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied during room temperature annealing following heat treatment. The superconducting T_c, dc resistivity, and low-energy optical conductivity recover slowly, implying a long relaxation time for the carrier density. Short relaxation times are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon -- and the charge transfer band. Monte Carlo simulations suggest that these two relaxation rates are related to two length scales corresponding to local oxygen ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure

    Full coherent control of nuclear spins in an optically pumped single quantum dot

    Full text link
    Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of QD-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond time-scale of Overhauser fields of the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using full coherent control of an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of short radio-frequency (rf) pulses. These results open the way to a new class of experiments using rf techniques to achieve highly-correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin squeezing

    Charge control in InP/GaInP single quantum dots embedded in Schottky diodes

    Full text link
    We demonstrate control by applied electric field of the charge states in single self-assembled InP quantum dots placed in GaInP Schottky structures grown by metalorganic vapor phase epitaxy. This has been enabled by growth optimization leading to suppression of formation of large dots uncontrollably accumulating charge. Using bias- and polarization-dependent micro-photoluminescence, we identify the exciton multi-particle states and carry out a systematic study of the neutral exciton state dipole moment and polarizability. This analysis allows for the characterization of the exciton wavefunction properties at the single dot level for this type of quantum dots. Photocurrent measurements allow further characterization of exciton properties by electrical means, opening new possibilities for resonant excitation studies for such system.Comment: 7 pages, 4 figure

    Electro-elastic tuning of single particles in individual self-assembled quantum dots

    Full text link
    We investigate the effect of uniaxial stress on InGaAs quantum dots in a charge tunable device. Using Coulomb blockade and photoluminescence, we observe that significant tuning of single particle energies (~ -0.5 meV/MPa) leads to variable tuning of exciton energies (+18 to -0.9 micro-eV/MPa) under tensile stress. Modest tuning of the permanent dipole, Coulomb interaction and fine-structure splitting energies is also measured. We exploit the variable exciton response to tune multiple quantum dots on the same chip into resonance.Comment: 16 pages, 4 figures, 1 table. Final versio

    Uncoupled excitons in semiconductor microcavities detected in resonant Raman scattering

    Get PDF
    We present an outgoing resonant Raman-scattering study of a GaAs/AlGaAs based microcavity embedded in a p-i-n junction. The p-i-n junction allows the vertical electric field to be varied, permitting control of exciton-photon detuning and quenching of photoluminescence which otherwise obscures the inelastic light scattering signals. Peaks corresponding to the upper and lower polariton branches are observed in the resonant Raman cross sections, along with a third peak at the energy of uncoupled excitons. This third peak, attributed to disorder activated Raman scattering, provides clear evidence for the existence of uncoupled exciton reservoir states in microcavities in the strong-coupling regime

    Effect of the GaAsP shell on optical properties of self-catalyzed GaAs nanowires grown on silicon

    Get PDF
    We realize growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy (TEM) of single GaAs/GaAsP NWs confirms their high crystal quality and shows domination of the zinc-blende phase. This is further confirmed in optics of single NWs, studied using cw and time-resolved photoluminescence (PL). A detailed comparison with uncapped GaAs NWs emphasizes the effect of the GaAsP capping in suppressing the non-radiative surface states: significant PL enhancement in the core-shell structures exceeding 2000 times at 10K is observed; in uncapped NWs PL is quenched at 60K whereas single core-shell GaAs/GaAsP NWs exhibit bright emission even at room temperature. From analysis of the PL temperature dependence in both types of NW we are able to determine the main carrier escape mechanisms leading to the PL quench

    Collective coherence in planar semiconductor microcavities

    Full text link
    Semiconductor microcavities, in which strong coupling of excitons to confined photon modes leads to the formation of exciton-polariton modes, have increasingly become a focus for the study of spontaneous coherence, lasing, and condensation in solid state systems. This review discusses the significant experimental progress to date, the phenomena associated with coherence which have been observed, and also discusses in some detail the different theoretical models that have been used to study such systems. We consider both the case of non-resonant pumping, in which coherence may spontaneously arise, and the related topics of resonant pumping, and the optical parametric oscillator.Comment: 46 pages, 12 figure

    High resolution nuclear magnetic resonance spectroscopy of highly-strained quantum dot nanostructures

    Full text link
    Much new solid state technology for single-photon sources, detectors, photovoltaics and quantum computation relies on the fabrication of strained semiconductor nanostructures. Successful development of these devices depends strongly on techniques allowing structural analysis on the nanometer scale. However, commonly used microscopy methods are destructive, leading to the loss of the important link between the obtained structural information and the electronic and optical properties of the device. Alternative non-invasive techniques such as optically detected nuclear magnetic resonance (ODNMR) so far proved difficult in semiconductor nano-structures due to significant strain-induced quadrupole broadening of the NMR spectra. Here, we develop new high sensitivity techniques that move ODNMR to a new regime, allowing high resolution spectroscopy of as few as 100000 quadrupole nuclear spins. By applying these techniques to individual strained self-assembled quantum dots, we measure strain distribution and chemical composition in the volume occupied by the confined electron. Furthermore, strain-induced spectral broadening is found to lead to suppression of nuclear spin magnetization fluctuations thus extending spin coherence times. The new ODNMR methods have potential to be applied for non-invasive investigations of a wide range of materials beyond single nano-structures, as well as address the task of understanding and control of nuclear spins on the nanoscale, one of the central problems in quantum information processing

    Isotope sensitive measurement of the hole-nuclear spin interaction in quantum dots

    Full text link
    Decoherence caused by nuclear field fluctuations is a fundamental obstacle to the realization of quantum information processing using single electron spins. Alternative proposals have been made to use spin qubits based on valence band holes having weaker hyperfine coupling. However, it was demonstrated recently both theoretically and experimentally that the hole hyperfine interaction is not negligible, although a consistent picture of the mechanism controlling the magnitude of the hole-nuclear coupling is still lacking. Here we address this problem by performing isotope selective measurement of the valence band hyperfine coupling in InGaAs/GaAs, InP/GaInP and GaAs/AlGaAs quantum dots. Contrary to existing models we find that the hole hyperfine constant along the growth direction of the structure (normalized by the electron hyperfine constant) has opposite signs for different isotopes and ranges from -15% to +15%. We attribute such changes in hole hyperfine constants to the competing positive contributions of p-symmetry atomic orbitals and the negative contributions of d-orbitals. Furthermore, we find that the d-symmetry contribution leads to a new mechanism for hole-nuclear spin flips which may play an important role in hole spin decoherence. In addition the measured hyperfine constants enable a fundamentally new approach for verification of the computed Bloch wavefunctions in the vicinity of nuclei in semiconductor nanostructures
    • …
    corecore